K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

Bài này đơn giản thôi bạn, nhưng quan trọng là nó dài nên mình ko có hứng làm chi tiết:)

Ta có: \(VT-VP=\frac{\left(1019a-15b^2-1004c\right)^2+18117\left(b^2-c\right)^2}{1019}\ge0\)

Tự xét dấu bằng nốt:)

6 tháng 11 2019

Có một cách dùng Cô si:(ko chắc đâu:v) 

Ta có: \(3\left(b^4+c^2\right)\ge3.2\left|b^2c\right|\ge6b^2c\)

\(15\left(a^2+b^4\right)\ge15.2.\left|ab^2\right|\ge30ab^2\)

\(1004\left(a^2+c^2\right)\ge1004.2\left|ac\right|\ge2008ac\)

Cộng theo vế 3 BĐT trên thu được ...

30 tháng 10 2017

Sắp xếp các từ sau:

Interested/Ba/doing/experiments/is/Physics class/in/some

=> ba is interested in doing experiments in Physics class

A computer/how/user/science class/in/Hoa/computer/learns/her/to

=> hoa learns how to use a computer in her science class

At/reads/He/sometimes/or/thể/studies/same time

he sometimes reads or studies at the same time

x+y>=2 căn xy

y+z>=2 căn yz

x+z>=2 căn xz

=>(x+y)(y+z)(x+z)>=8xyz

18 tháng 11 2016

Dễ thấy AB=BC=CD=DE

\(ABC\ge CDE=>AC\ge CE\)

Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)

\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)

Cộng theo vế (1) và (2)

\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)

Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều

22 tháng 2 2017

\(VT=a+b+c=\alpha.\frac{a}{\alpha}+\beta.\frac{b}{\beta}+\gamma.\frac{c}{\gamma}\)

Áp dụng phương pháp nhóm ABEL

\(\Rightarrow VT=\left(\alpha-\beta\right)\frac{a}{\alpha}+\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)+\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\alpha}+\frac{b}{\beta}\ge2\sqrt{\frac{ab}{\alpha\beta}}\left(1\right)\\\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge3\sqrt[3]{\frac{abc}{\alpha\beta\gamma}}\left(3\right)\end{matrix}\right.\)

Ta có \(ab\ge\alpha\beta\Rightarrow\frac{ab}{\alpha\beta}\ge1\) \(\Rightarrow2\sqrt{\frac{ab}{\alpha\beta}}\ge2\left(2\right)\)

Ta có \(abc\ge\alpha\beta\gamma\Rightarrow\frac{abc}{\alpha\beta\gamma}\ge1\Rightarrow3\sqrt[3]{\frac{abc}{\alpha\beta\gamma}}\ge3\left(4\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\frac{a}{\alpha}+\frac{b}{\beta}\ge2\)

\(\Rightarrow\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)\ge2\left(\beta-\gamma\right)\) ( 5 )

Từ ( 3 ) và ( 4 )

\(\Rightarrow\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge3\)

\(\Rightarrow\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\ge3\gamma\) ( 6 )

Theo đề bài ta có \(a\ge\alpha\Rightarrow\frac{a}{\alpha}\ge1\)\(\Rightarrow\left(\alpha-\beta\right)\frac{a}{\alpha}\ge\alpha-\beta\) ( 7 )

Từ ( 5 ) , ( 6 ) , ( 7 ) cộng theo từng vế

\(\Rightarrow VT=\left(\alpha-\beta\right)\frac{a}{\alpha}+\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)+\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\ge2\left(\beta-\gamma\right)+3\gamma+\alpha-\beta\)

\(\Rightarrow VT\ge2\beta-2\gamma+3\gamma+\alpha-\beta\)

\(\Rightarrow VT\ge\alpha+\beta+\gamma\)

\(\Leftrightarrow a+b+c\ge\alpha+\beta+\gamma\) ( đpcm )

AH
Akai Haruma
Giáo viên
17 tháng 5 2020

Lời giải:

Thực chất đề bài chỉ cần điều kiện $ab\geq 1$ là đủ rồi bạn.

BĐT cần chứng minh tương đương với:

\(\frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2+1)(b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\Leftrightarrow (ab-1)(a-b)^2\geq 0\)

(luôn đúng với mọi $ab\geq 1$)

Do đó ta có đpcm.

Dấu "=" xảy ra khi $ab=1$ hoặc $a=b$

NV
16 tháng 6 2020

a/ \(\Leftrightarrow a^2-b^2+c^2\ge a^2+b^2+c^2-2ab+2ac-2bc\)

\(\Leftrightarrow b^2-ab+ac-bc\le0\)

\(\Leftrightarrow b\left(b-a\right)-c\left(b-a\right)\le0\)

\(\Leftrightarrow\left(b-c\right)\left(b-a\right)\le0\) (luôn đúng do \(a\ge b\ge c\))

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)

b/ Tương tự như câu trên:

\(a^2-b^2+c^2-d^2\ge\left(a-b+c\right)^2-d^2=\left(a-b+c-d\right)\left(a-b+c+d\right)\ge\left(a-b+c-d\right)^2\)