tìm x 25,67<x<26,08
MÌNH GẤP LÀM GIÚP MIK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 25,67 * 99 + 25,67
= 25,67 * 99 + 25,67 * 1
= 25,67 * ( 99 + 1 )
=25,67 * 100
=2567
25,67 x 99 + 24 + 1,67 = 25,67 x 99 + 25,67
= 25,67 x 99 + 25,67 x 1
= 25,67 x ( 99 + 1 )
= 25,67 x 100
= 2567
#include <bits/stdc++.h>
using namespace std;
int main()
{
double dai=25.67;
double rong=23.45;
cout<<fixed<<setprecision(2)<<dai<<endl;
cout<<fixed<<setprecision(2)<<rong;
return 0;
}
a. 45 - 12 - 5 - 23
= ( 45 - 5 ) - ( 12 + 23 )
= 40 - 40
= 0
b. 2534 - 150 - 834
= ( 2534 - 834 ) - 150
= 1700 - 150
= 1550.
d. \(\frac{7}{3}-\frac{11}{5}-\frac{4}{5}\)
= \(\frac{7}{3}-\left(\frac{11}{5}+\frac{4}{5}\right)\)
= \(\frac{7}{3}-3\)
= \(\frac{-2}{3}\)
e. \(\frac{18}{13}+\frac{55}{46}+\frac{5}{13}\)
= \(\left(\frac{18}{13}+\frac{5}{13}\right)+\frac{55}{46}\)
= \(\frac{23}{13}+\frac{55}{46}\)
= \(\frac{1753}{598}\)
f. \(\left(\frac{27}{25}-\frac{4}{9}\right)-\left(\frac{2}{25}-\frac{5}{9}\right)\)
\(=\frac{27}{25}-\frac{4}{9}-\frac{2}{25}+\frac{5}{9}\)
\(=\left(\frac{27}{25}-\frac{2}{25}\right)-\left(\frac{4}{9}+\frac{5}{9}\right)\)
\(=1-1\)
\(=0\)
h. 8,275 - 1,56 - 3,215
= ( 8,275 - 3,215 ) - 1,56
= 5,06 - 1,56
= 3,5
j. 18,72 - 9,6 - 3,72 - 0,4
= ( 18,72 - 3,72 ) - ( 9,6 + 0,4 )
= 15 - 10
= 5
k. 46,55 + 20,33 + 25,67
= 46,55 + ( 20,33 + 25,67 )
= 46,55 + 46
= 92,55
l. 20 - 0,5 - 1,5 - 2,5 - 3,5 - 4,5 - 6,5
= 20 - ( 0,5 + 1,5 + 2,5 + 3,5 + 4,5 + 6,5 )
= 20 - 19
= 1
Không biết có đúng không nữa❤
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b. \(x=36\Rightarrow A=\dfrac{\sqrt{36}}{\sqrt{36}-2}=\dfrac{6}{6-2}=\dfrac{3}{2}\)
c. \(A=-\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
d. \(A>0\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
e. \(A=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2=Ư\left(2\right)\)
\(\Rightarrow\sqrt{x}-2=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;1;3;4\right\}\Rightarrow x=\left\{0;1;9;16\right\}\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Thay x=36 vào A, ta được:
\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)
c: Để \(A=-\dfrac{1}{3}\) thì \(3\sqrt{x}=-\sqrt{x}+2\)
\(\Leftrightarrow4\sqrt{x}=2\)
hay \(x=\dfrac{1}{4}\)
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
(x-42) - 17 = 127
=> x - 42 = 127 + 17 = 144
=> x = 144 + 42 = 186
23(x+1) = 69
=> x + 1 = 69 : 23 = 3
x = 3 - 1 = 2
2x + 5 = 120 : 2 = 60
=> 2x = 60 - 5 = 55
x = 55 : 2 = 27,5
5x - 2 = 613
=> 5x = 613 + 2 = 615
x = 615 : 5 = 123
a)(x-42)-17=127
(x-42)=127+17
(x-42)=144
x=144+42
x=186
b)23(x+1)=69
(x+1)=69:23
(x+1)=3
x=3-1
x=2
c)2.x+5=120:2
2.x+5=60
2.x=60-5
2.x=55
x=55:2
x=27,5
d)5.x-2=613
5.x=613+2
5.x=615
x=615:5
x=123
a:
Sửa đề: \(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{x^2-9}\right):\left(\dfrac{5}{3-x}-\dfrac{4x+2}{3x-x^2}\right)\)\(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{4x^2}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{5x-4x-2}{x\left(3-x\right)}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9-4x^2}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-2}{x\left(3-x\right)}\)
\(=\dfrac{-4x^2-12x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(3-x\right)}{x-2}\)
\(=\dfrac{-4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-x\left(x-3\right)}{x-2}=\dfrac{4x^2}{x-2}\)
b: x^2-4x+3=0
=>x=1(nhận) hoặc x=3(loại)
Khi x=1 thì \(P=\dfrac{4\cdot1^2}{1-2}=-4\)
c: P>0
=>x-2>0
=>x>2
d: P nguyên
=>4x^2 chia hết cho x-2
=>4x^2-16+16 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4;8;-8;16;-16}
=>x thuộc {1;4;6;-2;10;-6;18;-14}
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
x=26