K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10

Số cần tìm là \(\overline{a6b}\) theo đề bài

\(12x\overline{ab}=\overline{a6b}\)

\(120xa+12xb=100xa+60+b\)

\(20xa=60+11b\)

\(20xa⋮10\Rightarrow60+11xb⋮10\Rightarrow11xb⋮10\Rightarrow b=0\)

\(\Rightarrow20xa=60\Rightarrow a=3\)

Số cần tìm là 360

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

8 tháng 3 2022

\(mx^2+\left(m-1\right)x+3-4m=0\left(1\right)\)

\(m=0\Rightarrow\)\(\left(1\right)\Leftrightarrow-x+3=0\Leftrightarrow x=3\left(ktm\right)\)

\(m\ne0\Rightarrow x1< 2< x2\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-2\right)\left(x2-2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2-4m\left(3-4m\right)>0\\x1x2-2\left(x1+x2\right)+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\\dfrac{3-4m}{m}-2.\left(\dfrac{1-m}{m}\right)+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\-\dfrac{1}{2}< m< 0\\\end{matrix}\right.\)\(\Rightarrow m\in\phi\)

13 tháng 11 2016

Gọi số cần tìm là n=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2a3a4a5a6n=a1a2a3a4a5a6¯

Đặt x=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2a3x=a1a2a3¯ . Khi ấy ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a4a5a6=x+1a4a5a6¯=x+1 và n=1000x+x+1=1001x+1=y2n=1000x+x+1=1001x+1=y2 hay (y−1)(y+1)=7.11.13x(y−1)(y+1)=7.11.13x

Vậy hai trong ba số nguyên tố 7,11,137,11,13 phải là ước của một trong hai thừa số của vế trái và số còn lại phải là ước của thừa số còn lại của vế trái.

Đến đây dùng máy tính ta tìm đc n=183184;328329;528529;715716

13 tháng 11 2016

lí luận là ước rồi thì sao ra thế

7 tháng 1 2018

Các số chia hết cho 2 có tận cùng bằng 0 hoặc 4. Mặt khác mỗi số đều có các chữ số khác nhau, nên các số thiết lập được là

540; 504      940; 904      450; 954      950; 594      490    590

23 tháng 6 2017

Ta có các số có 3 chữ số chia hết cho 4 được viết từ 4 chữ số đã cho là : 540; 504; 940; 904

 

14 tháng 7 2019

Số chia hết cho 2 và 5 phải có tận cùng 0. Vậy các số cần tìm là

          540; 450;490

         940; 950; 590 .