Tìm \(x\in N\)biết
x : y=12
(2x+1).(x-3)=6
giúp vs đg gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ƯC\left(18,54\right)=Ư\left(18\right)=\left\{1;2;3;6;9;18\right\}\\ \Rightarrow x\in\left\{9;18\right\}\)
\(n\left(n+1\right)=6\)
Có \(6=1.6=2.3=3.2=6.1\)
Mà n(n+1) là tích của 2 số tự nhiên liên tiếp, n < n+1
\(\Rightarrow\left\{{}\begin{matrix}n=2\\n+1=3\end{matrix}\right.\Rightarrow n=2\)
Vậy n = 2 là giá trị cần tìm.
Từ đề bài suy ra $n;n+1$ là cặp ước của 6
Mà $n;n+1$ là 2 số nguyên liên tiếp
$6=2.3=(-3).(-2)$
$n+1>n$
Nên có 2 trường hợp $n+1=3;n=2$ và $n+1=-2;n=-3$
Vậy $n∈{-3;2}$
1, Hoành độ giao điểm 2 đường thẳng đó là:
\(2x-3=x+1\Leftrightarrow x=4\)
Tung độ giao điểm 2 đường thẳng đó là:
\(y=2x-3=2.1-3=-1\)
Vậy tọa độ giao điểm 2 đường thẳng đó là:\(\left(4;-1\right)\)
2, Để đường thẳng (d1) đi qua A(1;-2) thì:
\(-2=\left(2m-1\right).1+n+2\\ \Leftrightarrow2m-1+n+2+2=0\\ \Leftrightarrow2m+n+3=0\left(1\right)\)
Để đường thẳng (d2) đi qua A(1;-2) thì:
\(-2=2n.1+2m-3\\ \Leftrightarrow2n+2m-3+2=0\\ \Leftrightarrow2n+2m-1=0\left(2\right)\)
Từ (1), (2) ta có hệ: \(\left\{{}\begin{matrix}2m+n+3=0\\2n+2m-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{7}{2}\\n=4\end{matrix}\right.\)
1) Xét phương trình hoành độ giao điểm của 2 đường thẳng trên ta có:
\(2x-3=x+1.\\ \Leftrightarrow2x-x=1+3.\\ \Leftrightarrow x=4.\\ \Rightarrow y=5.\)
Tọa độ giao điểm của 2 đường thẳng trên là \(\left(4;5\right).\)
2. Thay tọa độ điểm \(A\left(1;-2\right)\) vào 2 phương trình đường trên ta có:
\(\left\{{}\begin{matrix}\left(2m-1\right)+n+2=-2.\\2n+2m-3=-2.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m+n=-3.\\2m+2n=1.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{7}{2}.\\m=4.\end{matrix}\right.\)
1.
Phương trình hoành độ giao điểm:
\(2x-3=x+1\Rightarrow x=4\)
\(\Rightarrow y=5\)
Vậy tọa độ giao điểm là \(\left(4;5\right)\)
2.
Hai đường thẳng cắt nhau tại A khi chúng không song song nhau và cùng đi qua A
\(\Rightarrow\left\{{}\begin{matrix}2m-1\ne2n\\\left(2m-1\right).1+n+2=-2\\2n.1+2m-3=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-1\ne2n\\2m+n=-3\\2m+2n=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n=4\\m=-\dfrac{7}{2}\end{matrix}\right.\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=-\dfrac{54}{5}\)
\(\dfrac{x}{2}=-\dfrac{54}{5}\Rightarrow x=-\dfrac{54}{5}.2=-\dfrac{108}{5}\)
\(\dfrac{y}{3}=-\dfrac{54}{5}\Rightarrow y=-\dfrac{54}{5}.3=-\dfrac{162}{5}\)
Vậy \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{2x}{4}=\dfrac{3y}{9}\)
mà 2x-3y=54
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=\dfrac{-54}{5}\)
Do đó: \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)
\(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{8}+\frac{2x-1}{12}\)
\(\Leftrightarrow\frac{6\left(x+5\right)}{24}-\frac{8\left(2x-3\right)}{24}=\frac{3\left(6x-1\right)}{24}+\frac{2\left(2x-1\right)}{24}\)
\(\Leftrightarrow6x+30-16x+24=18x-3+4x-2\)
\(\Leftrightarrow6x-16x-18x-4x=-2-3-24-30\)
\(\Leftrightarrow-32x=-59\)
\(\Leftrightarrow x=\frac{59}{32}\)
\(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow x-3=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)\left[1-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
___________
\(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot\dfrac{1}{2}\cdot x^2+3\cdot\left(\dfrac{1}{2}\right)^2\cdot x+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{1}{4}-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)
Ta thấy : 12 \(⋮\)3, 15 \(⋮\)3, 21\(⋮\)3 do đó \(A\)\(⋮\)3 chỉ khi \(x\)\(⋮\)3.
Điều này nghĩa là x chia hết cho 3 .
Vậy x = 3k với k\(\in\)N .
Để \(A\)không chia hết cho 3 chỉ khi x không chia hết cho 3 .
Vậy nghĩa là x chia cho 3 có số dư khác 0 .
Vậy x = 3k + r với k,r \(\in\)N và 0 < r < 3 .
ta có A=12+15+21+x
A=48+x
để A chia hết cho 3 thì A=4+8+x chia hết cho 3
A=12+x chia hết cho 3
suy ra x thuộc {0;3;6;9}
để A ko chia hết cho 3 thì A ko thuộc {0;3;6;9}
k mink nhé
Câu đầu
Ta có x:y=12
Suy ra \(\frac{x}{y}=12\)
Suy ra \(x=12y\)
suy ra \(x⋮12\)
Vậy x là các số tự nhiên chia hết cho 12 (x khác 0)
Câu 2
Từ đề bài có bảng sau