K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

ta có:

2016 + x X 3 = 10269

            x X 3 = 10269 - 2016 

            x X 3 =  8256

            x       = 8256 :3 

            x       = 2751

vậy x =2751

20 tháng 11 2017

 2016 + x X 3 = 10269

2016 + (x X 3) = 10269

= (10269 - 2016) : 3

= 8253 : 3

= 2751

27 tháng 10 2021

\(x=2-\sqrt{3}\)

\(x^2-4x=\left(2-\sqrt{3}\right)^2-4\left(2-\sqrt{3}\right)\)

\(=7-4\sqrt{3}-8+4\sqrt{3}\)\(=-1\)

=>A=8+2016=2024

19 tháng 8 2016

thay x= 15 vào biểu thức r bấm máy thuj

31 tháng 8 2016

không được làm như vây đâu bạn ạ. đây là một dạng toán tính nhanh, triệt tiêu dần dần chứ ko phải ngồi bấm máy tính. đi thi học sinh giỏi thì ai cho mang máy tính vào thi

20 tháng 11 2016

x.2016+x.3=10269

x . (2016 +3) = 10269

x  . 2019 = 10269

x           = 10269 : 2019

x          =  ?

Vậy x = ?

Nhớ tk cho mình nha

20 tháng 11 2016

2016+X x 3 = 10269

=> X x 3 = 8253

=> x=2751

22 tháng 1 2020

a) ĐKXĐ: x - 3 \(\ne\)0                                         x \(\ne\)3

             9 - x2 \(\ne\)0                       <=>          x \(\ne\)\(\pm\)3

            x + 3 \(\ne\)0                                       x \(\ne\)-3

      \(\frac{6x-12}{2x^2-18}\) \(\ne\)0                         \(6x-12\ne0\) và \(2x^2-18\ne0\)

     

               x \(\ne\)\(\pm\)3

<=>     \(x\ne2\) và x \(\ne\)\(\pm\)3

<=> x \(\ne\)\(\pm\)3 và x \(\ne\)2

Ta có: B = \(\left(\frac{x+3}{x-3}+\frac{2x^2-6}{9-x^2}+\frac{x}{x+3}\right):\frac{6x-12}{2x^2-18}\)

 B = \(\left(\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{6\left(x-2\right)}{2\left(x^2-9\right)}\)

B = \(\left(\frac{x^2+6x+9-2x^2+6+x^2-3x}{\left(x-3\right)\left(x+3\right)}\right):\frac{3\left(x-2\right)}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{3x+15}{\left(x+3\right)\left(x-3\right)}\cdot\frac{\left(x-3\right)\left(x+3\right)}{3\left(x-2\right)}\)

B = \(\frac{3\left(x+5\right)}{3\left(x-2\right)}\)

B = \(\frac{x+5}{x-2}\)

b) (sai đề)

c) Ta có: B = \(\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)

Để B \(\in\)Z <=> 7 \(⋮\)x - 2 <=> x - 2 \(\in\)Ư(7) = {1; -1; 7; -7}

Lập bảng: 

x - 2   1   -1   7   -7
  x   3 (ktm)  1  9  -5

Vậy ...

25 tháng 1 2020

a) \(\text{ĐKXĐ:}\hept{\begin{cases}x\ne\pm3\\x\ne2\end{cases}}\)

\(B=\left(\frac{x+3}{x-3}+\frac{2x^2-6}{9-x^2}+\frac{x}{x+3}\right):\frac{6x-12}{2x^2-18}\)

\(B=\left[\frac{x+3}{x-3}+\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right].\frac{2\left(x^2-9\right)}{6\left(x-2\right)}\)

\(B=\left[\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]\)

\(B=\left[\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}-\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}\right].\frac{2\left(x^2-9\right)}{6\left(x-2\right)}\)

\(B=\frac{x^2+6x+9-\left(2x^2-6\right)+x^2-3}{\left(x-3\right)\left(x+3\right)}.\frac{2\left(x^2-9\right)}{6\left(x-2\right)}\)

\(B=\frac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}.\frac{2\left(x-3\right)\left(x+3\right)}{6\left(x-2\right)}\)

\(B=\frac{x+5}{x-2}\)

b) Ta có: \(\frac{x+5}{x-2}=1+\frac{7}{x-2}\)

Để B nguyên thì: \(7⋮x-2\)

\(\Rightarrow x-2\inƯ\left(7\right)\)

\(\RightarrowƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng: 

x - 2-11-77
x13 (loại)-59

Vậy: \(x\in\left\{1;-5;9\right\}\)

5 tháng 8 2020

áp dụng công thức: A=IaI-IbI bé hơn hoặc = Ia+bI thì p

A đổi thành: I1004-xI-I x+1003I <= I2007

dấu = xr khi a.b<=0 thì p

Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có:

\(H=\left|x-3\right|+\left|4+x\right|=\left|x-3\right|+\left|-\left(4+x\right)\right|\)

    \(=\left|x-3\right|+\left|-4-x\right|\ge\left|x-3+\left(-4\right)-x\right|=7\)

Dấu''=''xảy ra khi: \(-4\le x\le3\)

(Có 2 TH)

13 tháng 3 2019

a) \(P=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)

*TH1: \(x< 2016\):

\(P=2016-x+2017-x+2018-x=6051-3x>6051-3\cdot2016=3\)

*TH2: \(2016\le x< 2017\):

\(P=x-2016+2017-x+2018-x=2019-x>2019-2017=2\)

*TH3: \(2017\le x< 2018\):

\(P=x-2016+x-2017+2018-x=x-2015\ge2017-2015=2\)(Dấu "=" xảy ra khi x = 2017)

*TH4: \(x\ge2018\):

\(P=x-2016+x-2017+x-2018=3x-6051\ge3\cdot2018-6051=3\)(Dấu "=" xảy ra khi x = 2018)

Vậy GTNN của P là 2 khi x = 2017.

b) \(x-2xy+y-3=0\)

\(\Leftrightarrow x\left(1-2y\right)+y-\frac{1}{2}-\frac{5}{2}=0\)

\(\Leftrightarrow2x\left(\frac{1}{2}-y\right)-\left(\frac{1}{2}-y\right)=\frac{5}{2}\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{2}-y\right)=\frac{5}{2}\)

\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)

2x-15-51-1
1-2y1-15-5
x3-210
y01-23
2 tháng 8 2020

Ta có\(\frac{x+21}{x}\times3=15+12\times6\)

=> \(\frac{x+21}{x}\times3=87\)

=> \(\frac{x+21}{x}=29\)

=> \(x+21=29\times x\)

=> \(28\times x=21\)

=> \(x=\frac{3}{4}\)

( x + 21) : X x 3=15 + 12 x 6

( x + 21) : X x 3=15 + 72

( x + 21) : X x 3=87

( x + 21) : X = 87 : 3

( x + 21) : X = 29

 x + 21 = 29 x X

 21 = 28 x X

28 x X = 21

=> X = 21 : 28

=> X = 3/4