Cho tam giác ABC . M là 1 điểm nằm trong tam giác .
CMR :
a) \(\widehat{BMC}\)= \(\widehat{A}\)+ \(\widehat{ABM}\)+\(\widehat{ACM}\)
b) Biết \(\widehat{ABM}\)+\(\widehat{ACM}\)= \(\frac{180^o-\widehat{A}}{2}\). CM BM là phân giác của \(\widehat{B}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên nửa mặt phẳng bờ AM không chứa điểm B, dựng \(\Delta\)AMP sao cho \(\Delta\)AMP ~ \(\Delta\)ABC
Định nghĩa tương tự với điểm N. Gọi phân giác của ^ABM cắt AM tại I.
Từ \(\Delta\)AMP ~ \(\Delta\)ABC ta có tỉ số \(\frac{AM}{AB}=\frac{AP}{AC}\)hay \(\frac{AP}{AM}=\frac{AC}{AB}\)
Đồng thời ^MAP = ^BAC => ^PAC = ^MAB. Từ đó \(\Delta\)APC ~ \(\Delta\)AMB (c.g.c)
Suy ra ^APC = ^AMB => ^APM + ^MPC = ^AMB => ^MPC = ^AMB - ^APM = ^AMB - ^ACB (1)
Lập luận tương tự ta có ^MNB = ^AMC - ^ANM = ^AMC - ^ABC (2)
Từ (1) và (2), kết hợp với giả thiết ^AMB - ^C = ^AMC - ^B suy ra ^MPC = ^MNB
Ta lại có ^PMC = ^AMC - ^AMP = ^AMC - ^ABC = ^AMB - ^ACB = ^AMB - ^AMN = ^NMB
Do vậy \(\Delta\)BNM ~ \(\Delta\)CPM (g.g) => \(\frac{BM}{CM}=\frac{MN}{MP}\)
Mặt khác \(\Delta\)ANM ~ \(\Delta\)AMP (~\(\Delta\)ABC) => \(\frac{MN}{PM}=\frac{AN}{AM}=\frac{AB}{AC}\)
Từ đây \(\frac{BM}{CM}=\frac{AB}{AC}\) hay \(\frac{BA}{BM}=\frac{CA}{CM}\). Theo ĐL đường phân giác trong tam giác có:
\(\frac{BA}{BM}=\frac{IA}{IM}\). Do đó \(\frac{CA}{CM}=\frac{IA}{IM}\)=> CI là phân giác của ^ACM
Điều này tức là phân giác của ^ABM và ^ACM cắt nhau tại điểm I nằm trên AM => ĐPCM.
Kéo dài tia AO và đặt là Ax. Khi đó:
\(\widehat{BOC}=\widehat{BOx}+\widehat{COx}\)
Xét tam giác OAB có \(\widehat{BOx}\) là góc ngoài tại O nên
\(\widehat{BOx}=\widehat{A_1}+\widehat{ABO}\) (1)
Tương tự, ta có \(\widehat{COx}=\widehat{A_2}+\widehat{ACO}\) (2)
Cộng theo vế (1) và (2), ta được:
\(\widehat{BOC}=\widehat{A_1}+\widehat{A_2}+\widehat{ABO}+\widehat{ACO}\)
\(=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
Ta có đpcm.
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
kẻ xA//BC
\(=>\angle\left(A3\right)=\angle\left(C\right)\left(so-le-trong\right)\)
\(=>\angle\left(A1\right)=\angle\left(B\right)\left(so-le-trong\right)\)
mà \(\angle\left(A1\right)+\angle\left(A2\right)+\angle\left(A3\right)=180^o\left(ke-bu\right)\)
\(=>\angle\left(A2\right)+\angle\left(B\right)+\angle\left(C\right)=180^o\)