K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(=2\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(1-\frac{1}{100}\right)\)

\(=2.\frac{99}{100}\)

\(=\frac{99}{50}\)

19 tháng 11 2017

Đầu tiên đặt 2 ra 

Đặt bt còn lại là ...

Tách 1/ 1×2=1-1/2; 1/2×3=1/2-1/3....1/99×100=1/99-1/100

=1/1-1/100

=...

17 tháng 2 2020

a. A= -2012+(-596)+(-201)+496+301

      = -2012+(496-596)+(301-201)

      = -2012+(-100)+100

      = -2012

17 tháng 2 2020

c. 

    Tổng C có số số hạng là:

          (100-1):1+1=100

    Có số cặp là:

          100:2=50(cặp)

Ta có: C= 1-2+3-4+...+99-100

             = (1-2)+(3-4)+...+(99-100)

             = (-1)+(-1)+...+(-1)

             = (-1).50

             =-50

26 tháng 2 2020

Học hành như cá kho tiêu kho nhiều thì mặn học nhiều thì ngu

The boy : hay ^_^

13 tháng 2 2020

a Ta có 

B= 1-2-3+4-5-6-7+8......+ 97 -98-99+100

  = ( 1-2-3+4)+ (5-6-7+8)+ .....+ ( 97-98-99+100)

=       0 +0+... +0 (25 cs 0)

=0 x25=0

13 tháng 2 2020

a)B=0 

Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

29 tháng 6 2016

a)1+2+3+4+...+100

=(1+100)+(2+99)+...+(50+51)    (có 50 dãy số như vậy)

=101x50

=5050

b)2+4+6+...+80

=(2+80)+...+(40+42)          (có 40 dãy số như vậy)

=82x40

=3280

c)1+3+5+7+...+99

=(1+99)+...+(49+51)     (có 5 số như vậy)

=100x50

=5000

  •  
13 tháng 7 2016

thiện óc vaatk ko biết làm bài này

10 tháng 3 2017

-1+-1+-1+.......+-1(50 cs -1)

bn tính đi

10 tháng 3 2017

\(S=1^2+2^2+3^2+...+99^2+100^2-\left(2^2+4^2+6^2+...+100^2\right)\)( thêm vào vế đầu các thừa số có cơ số chẵn, bớt đi 1 lần thế nữa là 2 lần)
Đặt vế sau là S2 nhá, \(S_2=4\left(1^2+2^2+3^2+...+50^2\right)\)

mình không tính cụ thể, bạn tự tính dùng công thức như sau: ví dụ tính 1^2 ----> 50^2 rồi thì bạn tự tính từ 1^2 ------> 100^2 nhá

\(1^2+2^2+3^2+...+50^2\)

\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+50\left(51-1\right)\)

\(=1.2+2.3+3.4+...+50.51+\left(1+2+3+...+50\right)\)
vế sau bạn tự tính, bh đi tính vế đầu

\(A=1.2+2.3+3.4+...+50.51\)

\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+50.51\left(52-49\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+50.51.52-49.50.51\)

\(=50.51.52\)

\(\Rightarrow A=50.17.52\)
bạn cứ nhớ cái dãy 1.2+2.3+3.4+...+n(n+1) thì kết quả là n(n+1)(n+2)/3 nhé, bây giờ tính nốt đi, mệt quá... bài dài v~