K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

Theo mình thì đề thiếu: \(abc=1\)Mình sẽ giải theo dữ kiện này.

Đặt \(a=x^3;b=y^3;c=z^3\)

Do a;b;c> 0 nên x3;y3;z3>0

Bạn chứng minh bài toán phụ: \(x^3+y^3\ge xy\left(x+y\right)\)  (*)

Lại có abc=1=> (xyz)3=1=>xyz=1

Áp dụng (*), ta có:

\(\frac{1}{a+b+1}=\frac{1}{x^3+y^3+xyz}\le\frac{1}{xy\left(x+y+z\right)}=\frac{z}{x+y+z}\)

Tương tự, ta có: \(\frac{1}{b+c+1}\le\frac{x}{x+y+z}\)

                            \(\frac{1}{c+a+1}\le\frac{y}{x+y+z}\)

\(\Rightarrow\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le1\)

Vậy..........

Cách trình bày của mình có thể chưa tốt, bạn thông cảm

2 tháng 1 2018

post ít một thôi

17 tháng 8 2020

\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)

\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)

Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$

$\Leftrightarrow (\frac{1}{a}+\frac{1}{b})+(\frac{1}{c}-\frac{1}{a+b+c})=0$

$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$

$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$

$\Leftrightarrow \frac{(a+b)(c+a)(c+b)}{abc(a+b+c)}=0$

$\Leftrightarrow (a+b)(c+a)(c+b)=0$

$\Leftrightarrow a+b=0$ hoặc $c+a=0$ hoặc $c+b=0$

Không mất tổng quát giả sử $a+b=0$

$\Leftrightarrow a=-b$.

Khi đó:

$\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$

$=\frac{-1}{b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$

$=\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}+b^{2017}+c^{2017}}$

$=\frac{1}{a^{2017}+b^{2017}+c^{2017}}$ (đpcm)

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lần sau bạn lưu ghi đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt nhất. Mọi người đọc đề của bạn dễ hiểu thì cũng sẽ dễ giúp hơn.

18 tháng 5 2018

Giải:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)

\(\Leftrightarrow-\dfrac{a+b}{ab}-\dfrac{1}{c}+\dfrac{1}{a+b+c}=0\)

\(\Leftrightarrow-\dfrac{a+b}{ab}-\dfrac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Vậy ...

18 tháng 5 2018

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

⇔ bc(a+b+c) + ac(a+b+c) + ab(a+b+c) = abc (quy đồng và khử mẫu vì a,b,c ≠ 0)

\(\Leftrightarrow abc+b^2c+bc^2+a^2c+abc+ac^2+a^2b+ab^2+abc=abc\)

\(\Leftrightarrow bc\left(b+c\right)+a\left(c^2+2bc+b^2\right)+a^2\left(b+c\right)=0\)(chuyển abc ở vế phải sang chỉ còn 2abc rồi đặt nhân tử chung)

\(\Leftrightarrow\left(b+c\right)\left(bc+ab+ac+a^2\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left[b\left(a+c\right)+a\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(b+c\right)\left(a+c\right)\left(a+b\right)=0\left(đpcm\right)\)

NV
1 tháng 1 2019

\(\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)

\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\ge\dfrac{2\sqrt{bc}}{a}.\dfrac{2\sqrt{ac}}{b}.\dfrac{2\sqrt{ab}}{c}=8\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)