K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

x2+x+1=x2+2.x.1/2+1/4+3/4

=(x+1/2)2+3/4

Vì (x+1/2)2\(\ge\)0 nên

(x+1/2)2+3/4>0

=>x2+x+1>0

20 tháng 8 2024

x2+x+1=x2+2.x.1/2+1/4+3/4 =(x+1/2)2+3/4 Vì (x+1/2)2 ≥ 0 nên (x+1/2)2+3/4>0 =>x2+x+1>0 

18 tháng 12 2016

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x-\frac{1}{2}\right)^2\ge0,\forall x\)

=> \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

=>đpcm

18 tháng 12 2016

Ta có:

\(x^2-x+1\\ < =>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)

Vì: \(\left(x-\frac{1}{2}\right)^2\ge0,\forall x\)

(ĐPCM)

AH
Akai Haruma
Giáo viên
26 tháng 6 2020

Lời giải:

Do $x\geq 2$ nên:

$x-2\geq 0$

$2x-1\geq 2.2-1>0$

Do đó: $(x-2)(2x-1)\geq 0$ (đpcm)

16 tháng 9 2018

a) \(x^2+8x+17=\left(x^2+8x+16\right)+1=\left(x+4\right)^2+1\ge1>0\)

\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

16 tháng 9 2018

giải giúp mik với

5 tháng 7 2015

x^2-x+1>0

<=>x2-2x.1/2+1/4+3/4>0

<=>(x-1/2)2+3/4 >0 ( luôn đúng với mọi x vì (x-1/2)2\(\ge\)0 với mọi x)

vậy x^2-x+1>0 với mọi x thuộc R

3 tháng 11 2017

Mọi người giúp với 

Tìm x

x^2+5x=0

Chứng minh x^2-2x+3>0 với mọi số thực x

Đường trung bình của một tam là đoạn thẳng nối 2 trung điểm hai cạnh của tam giác.Cho tam giác ABC có I là trung điểm của cạnh AB.Qua I kẻ đường thẳng a // với cạnh BC cắt AC tại K

a) Chứng minh IK là đường trung bình của tam giác ABC

b) Tính độ dài IK với BC=12cm

c) Qua K kẻ đường thẳng b // với AB cắt BC tại L . Chứng minh rằng tứ giác BLKL là hình bình hành

2 tháng 10 2017

Câu a :

\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)

Vậy biểu thức trên luôn lớn hơn 0 với mọi x

2 tháng 10 2017

Làm Full cho you nhé,bạn kia sai r:

\(linh_1=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(đpcm\right)\)

\(linh_2=-4x^2-4x-2=-1\left(4x^2+4x+2\right)=-1\left(4x^2+4x+1+1\right)=-1\left(4x^2+4x+1\right)-1=-1\left(2x+1\right)^2-1< 0\left(đpcm\right)\)

6 tháng 11 2019

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

24 tháng 8 2024

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ