K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2024

0.3333... đúng ko 

14 tháng 10 2024

1 / 3 = \(\dfrac{1}{3}\) = 0,3333...

Mình làm đúng ko?

25 tháng 3 2024

ính giá trị biểu thức:

(1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 3^5 + (1/3^5 + 1/3^6 + 1/3^7 + 1/3^8) . 3^9 + ... + (1/3^97 + 1/3^98 + 1/3^99 + 1/3^100) . 3^101

Ta có thể thực hiện theo các bước sau:

Bước 1: Nhóm các hạng tử:

Ta có thể nhóm các hạng tử trong biểu thức thành các nhóm có dạng:

(1/3^n + 1/3^(n+1) + 1/3^(n+2) + 1/3^(n+3)) . 3^(n+4)

Với n = 1, 5, 9, ..., 97.

Bước 2: Tính giá trị từng nhóm:

Xét nhóm thứ nhất:

(1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 3^5

= (1/3 + 1/3^2 + 1/3^3 + 1/3^4) . (3^4 . 3)

= (1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 81

Ta có thể sử dụng công thức khai triển tổng của cấp số nhân để tính giá trị trong ngoặc:

1 + 1/3 + 1/3^2 + 1/3^3 = (1 - (1/3)^4) / (1 - 1/3) = 80/81

Do đó, giá trị của nhóm thứ nhất là:

(80/81) . 81 = 80

Tương tự, ta có thể tính giá trị các nhóm tiếp theo:

Giá trị nhóm thứ hai: (80/81) . 3^4 . 81 = 80 . 3^4

Giá trị nhóm thứ ba: (80/81) . 3^8 . 81 = 80 . 3^8

...

Giá trị nhóm thứ 25: (80/81) . 3^96 . 81 = 80 . 3^96

Bước 3: Cộng các giá trị từng nhóm:

Giá trị của biểu thức là tổng giá trị của các nhóm:

80 + 80 . 3^4 + 80 . 3^8 + ... + 80 . 3^96

= 80 (1 + 3^4 + 3^8 + ... + 3^96)

Bước 4: Tính tổng 1 + 3^4 + 3^8 + ... + 3^96:

Đây là một cấp số nhân với số hạng đầu tiên là 1, công bội là 3^4 và có 25 số hạng.

Tổng của cấp số nhân này là:

(1 - (3^4)^25) / (1 - 3^4) = (1 - 3^100) / (1 - 81) = (1 - 3^100) / -80

Bước 5: Thay giá trị và kết luận:

Thay giá trị tổng vào biểu thức, ta được:

80 (1 + 3^4 + 3^8 + ... + 3^96) = 80 . (1 - 3^100) / -80

= (1 - 3^100)

Vậy, giá trị của biểu thức là 1 - 3^100.

Lưu ý:

  • Việc sử dụng công thức khai triển tổng cấp số nhân giúp đơn giản hóa việc tính giá trị các nhóm.
  • Cần chú ý đến số hạng đầu tiên, công bội và số hạng của cấp số nhân khi áp dụng công thức.

Kết quả:

Giá trị của biểu thức là 1 - 3^100.

6 tháng 3 2017

2 câu đầu thôi bạn ak

4 tháng 7 2015

\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)

Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)

(101-5):4+1=25(số hạng)

=>A=25.(3+32+33+34)=25.120=3000

24 tháng 11 2021

ềdfđừytretwrerfwrevcreerwaruircewtdyererrrrrrrrrrrrrrrrdbrbr trưewyt ưt rtf gygr frirfy gfyrgfyur uỷ gyurg rfuy frg egfyryfyrty trg r rei eoer7 87re r7ye7i t 87rt 7 t   ryigr yyrggfygfhdg  gfhg gf  fgg jdfgjh f fggfgfg jffg jfg f gfg fjhg hjfg gfsdj fgdj gfdjfgdjhf gjhg f gfg fk f fjk hjkfghjkfg h hjyjj ỵthj

22 tháng 12 2017

a)Nhận xét

\(\dfrac{n^3+1}{n^3-1}=\dfrac{\left(n+1\right)\left(n^2-n+1\right)}{\left(n-1\right)\left(n^2+n+1\right)}=\dfrac{\left(n+1\right)\left[\left(n-0,5\right)^2+0;75\right]}{\left(n-1\right)\left[\left(n+0,5\right)^2+0,75\right]}\)

Áp dụng công thức trên:

\(A=\dfrac{2^3+1}{2^3-1}.\dfrac{3^3+1}{3^3-1}....\dfrac{9^3+1}{9^3-1}\)

\(=\dfrac{\left(2+1\right)\left[\left(2-0,5\right)^2+0,75\right]}{\left(2-1\right)\left[\left(2+0,5\right)^2+0,75\right]}.\dfrac{\left(3+1\right)\left[\left(3-0,5\right)^2+0,75\right]}{\left(3-1\right)\left[\left(3+0,5\right)^2+0,75\right]}...\dfrac{\left(9+1\right)\left[\left(9-0,5\right)^2+0,75\right]}{\left(9-1\right)\left[\left(9+0,5\right)^2+0,75\right]}\)

\(=\dfrac{3\left(1,5^2+0,75\right)}{\left(2,5^2+0,75\right)}.\dfrac{4\left(2,5^2+0,75\right)}{2\left(3,5^2+0,75\right)}...\dfrac{10\left(8,5^2+0,75\right)}{8\left(9,5^2+0,75\right)}\)

\(=\dfrac{3.4....10}{1.2.....8}.\dfrac{1,5^2+0,75}{9,5^2+0,75}\)

\(=\dfrac{9.10}{2}.\dfrac{3}{91}\)

\(=\dfrac{3}{2}.\dfrac{90}{91}< \dfrac{3}{2}\)

\(\Rightarrowđpcm\)

b) Làm tương tự

14 tháng 10 2019

2 - 1 = 1     3 - 1 = 2     1 + 1 = 2     1 + 2 = 3

3 - 1 = 2     3 - 2 = 1     2 - 1 = 1     3 - 2 = 1

3 - 2 = 1     2 - 1 = 1     3 - 1 = 2     3 - 1 = 2

17 tháng 8 2023

2 - 1 = 1     3 - 1 = 2     1 + 1 = 2     1 + 2 = 3

3 - 1 = 2     3 - 2 = 1     2 - 1 = 1     3 - 2 = 1

3 - 2 = 1     2 - 1 = 1     3 - 1 = 2     3 - 1 = 2

ok nhá

 

30 tháng 11 2019

Lời giải chi tiết:

1 + 2 = 3 3 – 1 = 2 1 + 1 = 2 2 – 1 = 1
3 – 2 = 1 3 – 2 = 1 2 – 1 = 1 3 – 1 = 2
3 – 1 = 2 2 – 1 = 1 3 – 1 = 2 3 – 2 = 1
24 tháng 8 2021
1+2=33-1=21+1=22-1=1
3-2=13-2=12-1=13-1=2
3-1=22-1=13-1=23-2=1

#HT#

16 tháng 11 2021

4333344

21 tháng 1 2022

?reeeeeeeeeeee

13 tháng 2 2018

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

13 tháng 2 2018

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)