chứng minh \(x^8+x^4+1\)chia hết cho \(x^2+x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(3^x=243\)
nên \(3^x=3^5\)
hay x=5
b: \(x^5=32\)
nên \(x^5=2^5\)
hay x=2
c: \(x^6=729\)
\(\Leftrightarrow x^2=9\)
=>x=3 hoặc x=-3
2. \(\left(x^2+x\right)\left(x+2\right)-15y=x\left(x+1\right)\left(x+2\right)-15y\)
Vì \(x\), \(x+1\)và \(x+2\)là 3 số nguyên liên tiếp
\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)
mà \(15y⋮3\)\(\Rightarrow x\left(x+1\right)\left(x+2\right)-15y⋮3\)
hay \(\left(x^2+x\right)\left(x+2\right)-15y⋮3\)( đpcm )
b, Có : 3a+7b chia hết cho 4
Mà 16a và 8b đều chia hết cho 4
=> 3a+7b+16a-8b chia hết cho 4
=> 19a-b chia hết cho 4
=> ĐPCM
Tk mk nha
câu 1
(x+1)+(x+2)+...+(x+100)=5750
(x+x+...+x)+(1+2+3+...+99+100)=5750 (có 100 số x và từ 1 -100 có 100 số)
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=700
x=7
vậy........
câu 2
a)ta có
abcdeg=ab.10000+cd.100+eg
=9999.4b+99cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
ta thấy 9999ab+99cd\(⋮\)11 và ab+cd+eg cn vậy...
=>....
vậy...
b)ta có 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8 (=10^28)
=>10^28+8 chia hết cho 28 (1)
ta có 10^28+8=10...08(27 cs 0)
=>10^28+8\(⋮\)9(2)
vì ưCLN(8;9)=1 (3)
từ (1)(2)(3) suy ra 10^28+8 chia hết cho 72
vậy.....
Bài 1:
\(10^{2n}-1=\left(10^n-1\right)\left(10^n+1\right)⋮13\)
Ta có: x8+x4+1=x8+2x4+1-x4
= (x4+1)2-(x2)2=(x4+x2+1).(x4-x2+1)
Tiếp tục phân tích
x4+x2+1= x4+2x2+1-x2=(x2+1)2-x2
(x2+x+1).(x2-x+1)
=> x8+x4+1= (x2+x+1).(x2-x+1).(x4-x2+1)
=> x8+x4+1 chia hết cho x2+x+1
x8+x4+1 = x8- x5+x5 – x2+ x4-x + x2+x + 1
= x5 (x3- 1)+ x2 (x3- 1)+ x (x3- 1)+( x2+x + 1)
= x5 (x -1)(x2+x + 1)+ x2 (x -1)(x2+x + 1)+x (x -1)(x2+x + 1)+ ( x2+x + 1)