Cho tam giác ABC vuông tại A. H,D,K lầm lượt là trung điểm của AB,BC,CA
a) Chứng minh AD=HK
b) Gọi E là điểm đối xứng của D qua K. Tứ giác ADCE là hình gì. Tìm điều kiện của tam giác ABC để ADCE là hình vuông
c) Tính \(\frac{AD^2+BK^2+CH^2}{3BC^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a, O là trung điểm của AC (gt)
E đối xứng với D qua O (gt) => O là trung điểm của DE (đn)
xét tứ giá AECD
=> AECD là hình bình hành
Tam giác ABC cân tại A có AD là phân giác => AD là đường cao => AD _|_ BC => góc ADC = 90
=> AECD là hình chữ nhật (dh)
b, tam giác ABC cân tại A (gt)
AD là phân giác (Câu a)
=> AD đồng thời là đường trung tuyến của tam giác ABC (đl)
=> D là trung điểm của BC (đn)
=> BD = BC : 2 (đl)
BC = 6 cm
=> DB = 3 cm
xét tam giác ABD vuông tại D => AB^2 = AD^2 + BD^2
AB = 5 CM
=> 5^2 = 3^2 + AD^2
=> 25 = 9 + AD^2
=> AD^2 = 16
=> AD = 4 do AD > 0
tự tính S
c, ACDE là hình chữ nhật (Câu a)
để ADCE là hình vuông
<=> AD = DC
<=> tam giác ADC cân tại D mà góc ADC = 90
<=> góc ACD = 45
<=> tam giác ABC vuông cân tại A
vậy cần thê đk là vuông
b: Xét tứ giác ADBK có
E là trung điểm của AB
E là trung điểm của DK
Do đó: ADBK là hình bình hành
mà DA=DB
nên ADBK là hình thoi
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến ứng với cạnh huyền BC
nên \(AD=BD=CD=\dfrac{BC}{2}\)
Xét tứ giác ADBK có
E là trung điểm của đường chéo AB
E là trung điểm của đường chéo DK
Do đó: ADBK là hình bình hành
mà DA=DB
nên ADBK là hình thoi
Suy ra: K đối xứng với D qua AB
b: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của BC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//AC và \(DE=\dfrac{AC}{2}\)
mà \(DE=\dfrac{DK}{2}\)
nên DK//AC và DK=AC
hay AKDC là hình bình hành
Mình vẽ hình hơi xâu, bạn thông cảm nhé!
a) Xét từ giác ABMC có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)
+ DA = DM (gt)
+ DB = DM(gt)
suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật
Các câu còn lại bạn đầu có thể giải theo cách trên nhé!
( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)