bcnn(a,b)+ucln(a,b)=19 và a<b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi UCLN ( a,b ) = d
a = dm \(\left(m,n\inℕ^∗;m< n\right)\)
b = dn
Ta có:
dmn + d = 19
d ( mn + 1 ) = 19
\(\Rightarrow d\inƯ\left(19\right)=\left\{1;19\right\}\)
\(d=1\Rightarrow mn+1=19\)
\(\Rightarrow mn=18\)
\(\Rightarrow m\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
Ta có bảng sau:
m | 1 | 2 | 3 | 6 | 9 | 18 |
n | 18 | 9 | 6 | 3 | 2 | 1 |
a | 1 | 2 | 3 | 6 | 9 | 18 |
b | 18 | 9 | 6 | 3 | 2 | 1 |
Mà a<b \(\Rightarrow\left(a,b\right)\in\left\{\left(1,18\right);\left(2,9\right);\left(3,6\right)\right\}\)
\(+,d=19\Rightarrow mn+1=1\)
\(\Rightarrow mn=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\\n=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)( loại )
Vậy \(\left(a,b\right)\in\left\{\left(1,18\right);\left(2,9\right);\left(3,6\right)\right\}\)
a. Đặt d là UCLN(a và b).Để UCLN( a và b) = d <=> a = da' ; b = db' ; UCLN(a' và b') = 1
BCNN(a và b) = a.b/UCNN(a và b) = da'.db'/d = da'b'
Theo đề bài ta có:
BCNN(a và b) + UCNN(a và b) = 19
nên da'b' + d = 19
=> d(a'b' + 1) = 19
Do đó a'b' +1 là Ư(19) và a'b'+1 lớn hơn hoặc bằng 2
Theo đề bài a < b => a' < b' . Ta đc:
d | a'b'+1 | a'b' | a' | b' | a | b |
1 | 19 | 18=9.2 | 2 | 9 | 2 | 9 |
Vậy cặp số a=2 và b=9
b.Tương tự phần a. ta có:
BCNN(a và b) - UCLN(a và b) = 3
nên da'b' - d = 3
=> d(a'b' - 1) = 3
Do đó a'b' - 1 là Ư(3) = 1.Theo đề bài a < b => a' < b' . Ta đc :
d | a'b'-1 | a'b' | a' | b' | a | b |
3 | 1 | 2= 2.1 | 1 | 2 | 3 | 6 |
Vậy a = 3 ; b = 6
gọi d là \(ƯCLN\left(a,b\right)\)
ta gọi \(a=d\cdot m;b=d\cdot n\)với\(\left(m;n\right)=1\)
ta có : \(BCNN\left(a,b\right)=a\cdot b\)
\(ƯCLN\left(a,b\right)=d\cdot m\cdot d\cdot n\)
\(d=m\cdot n\cdot d\)
do \(BCNN\left(a,b\right)+ƯCLN\left(a,b\right)=19\)
\(\Rightarrow m\cdot n\cdot d+d=19\)
\(\Rightarrow d\cdot\left(m\cdot n+1\right)=19\)
do \(m\cdot n+1>1\)và \(19=19\cdot1\)
\(\Rightarrow a=\left\{1;2\right\}\)
\(b=\left\{9;18\right\}\)
#)Giải :
Đặt \(\left(a,b\right)=d\Rightarrow\hept{\begin{cases}a=md\\b=nd\end{cases}\left(m,n\inℕ^∗,\left(m,n\right)=1\right)}\)
Vì \(ab=\left[a,b\right]\left(a,b\right)\Leftrightarrow\left[a,b\right]=\frac{ab}{\left(a,b\right)}=\frac{dm.dn}{d}=dmn\)
\(\Leftrightarrow dmn+d=19\Leftrightarrow d\left(mn+1\right)=19\Leftrightarrow mn+1\inƯ\left(19\right)\)
Mà \(m,n\inℕ^∗\Rightarrow mn+1>2\)
Lập bảng xét các Ư(19) > 2
Giả sử \(\left(a,b\right)=m\)khi đó đặt \(a=mx,b=my\)thì \(\left(x,y\right)=1\).
\(\left[a,b\right]=\frac{ab}{\left(a,b\right)}=\frac{mx.my}{m}=mxy\)
\(mxy+m=19\)
\(\Leftrightarrow m\left(xy+1\right)=19=1.19\)
Nếu \(m=1\): \(ab+1=19\Leftrightarrow ab=18\)
Do đó \(\left(a,b\right)\)có thể nhận các giá trị: \(\left(1,18\right),\left(2,9\right)\).
Nếu \(m=19\): dễ thấy không thỏa mãn.