Chứng minh biểu thức B= x5 - 15x2 - x + 5 chia hết cho 5 với mọi số nguyên x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
(n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)
tham khảo
Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :
P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .
Ta có :
P ( 0 ) chia hết cho 5
⇒ a . 02+ b . 0 + c chia hết cho 5
⇒ c chia hết cho 5
P ( 1 ) chia hết cho 5
⇒ a . 12 + b . 1 + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )
P ( - 1 ) chia hết cho 5
⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5
⇒ 2a chia hết cho 5
Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5
Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5
Vậy a , b , c chia hết cho 5 . ( đpcm )
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Có \(P\left(x\right)⋮5\)với mọi x
=> \(P\left(0\right)=d⋮5\)
\(P\left(1\right)=a+b+c+d⋮5\)
\(P\left(-1\right)=-a+b-c+d⋮5\)
\(P\left(2\right)=8a+4b+2c+d⋮5\)
\(P\left(-2\right)=-8a+4b-2c+d\)
=> \(a+b+c⋮5\)và \(-a+b-c⋮5\)
=> \(a+b+c+\left(-a+b-c\right)⋮5\)
=> \(2b⋮5\)
Mà 2 là SNT và b nguyên
=> \(b⋮5\)
=> \(a+c⋮5\); \(-a-c⋮5\); \(8a+2c⋮5\); \(-8a-2c⋮5\)
=> \(2\left(a+c\right)⋮5\)
=> \(2a+2c⋮5\)
=> \(2a+2c+\left(-8a-2c\right)⋮5\)
=> \(-6a⋮5\)
mà 6 không chia hết cho 5
=> \(a⋮5\)
=> \(b⋮5\)
quá đơn giản với BỐ
F(0)=d⇒d⋮5F(0)=d⇒d⋮5
F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5
F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5
⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5
⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5
⇒a+c⋮5
Tham khảo nhé:
Câu hỏi của Doraemon - Toán lớp 7 - Học toán với OnlineMath
Ta có: n(2n – 3) – 2n(n + 1) = 2 n 2 – 3n – 2 n 2 – 2n = - 5n
Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .
Đố ai biết
Giúp tui zới