tim so nguyen to p sao cho 2p-1 ; 3p+1 la cac so nguyen to
Ai lam dung tich ho minh cai nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Với p = 2 thì p2 + 2 = 22 + 2 = 4 + 2 = 6 (loại vì là hợp số)
+) Với p = 3 thì \(\hept{\begin{cases}2p-1=2.3-1=6-1=5\\p^2+2=3^2+2=9+2=11\end{cases}}\left(tm\right)\)
+) Với p > 3, p có dạng 3k + 1 hoặc 3k + 2
TH1: p = 3k + 1
\(\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+1+2=9k^2+6k+3⋮3\)(loại)
TH2: p = 3k + 2
\(\Rightarrow2p-1=2\left(3k+2\right)-1=6k+4-1=6k+3⋮3\) (loại)
Vậy p = 3
Do p là số nguyên tố mà p < 3
\(\Rightarrow p=2\) Khi đó : \(2p+1=5\) là số nguyên tố
Do đó \(4p+1=4.2+1=9\) là hợp số.
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là : 3k + 1 và 3k + 2
Ta có 2 trường hợp :
* TH1 : p = 3k + 1
\(\Rightarrow\)2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 ) là hợp số
\(\Rightarrow\)Trường hợp này bị loại vì theo đề bài 2p + 1 phải là nguyên tố .
* TH2 : p = 3k + 2
\(\Rightarrow\)2p + 1 = 2 . ( 3k + 2 ) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố .
\(\Rightarrow\)Trường hợp này được chọn vì đúng theo yêu cầu đề bài .
\(\Rightarrow\)4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 ) là hợp số .
Vậy 4p + 1 là hợp số ( đpcm )
Nếu 4 số nguyên tố đó không có số nào chẵn thì tổng của 4 số là một số chẵn nên chia hết cho 2.
Nếu 4 số nguyên tố đó có số chẵn thì dãy 4 số nguyên tố liên tiếp là:2;3;5;7
Tổng của chúng là:2+3+5+7=17 là số nguyên tố
Nếu cả 4 số nguyên tố đều nhỏ hơn 2 thì 4 số đó phải là số lẻ
=>Tổng 4 số lẻ là số chẵn, lại là số lớn hơn 2 nên tổng không thể là nguyên tố
=>Trong 4 số có 1 số là số 2, các số nguyên tố tiếp theo là 3, 5, 7
Tổng 4 số là:
2+ 3+ 5+ 7= 17
Vậy 17 là số nguyên tố
Đáp số: 2, 3, 5, 7
Đúng thì k cho mình nhé!
Vì p^2+1 và p^4+1 lớn hơn 2 =>p^2+1 và p^4+1 là số lẻ
Vì chẵn + lẻ là lẻ, 1 là số lẻ => p^2 và p^4 là chẵn => p chẵn => p=2