ta có bđt cần chứng minh
\(\frac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\Leftrightarrow\sqrt{xy+z}+\sqrt{2\left(x^2+y^2\right)}\ge1+\sqrt{xy}\)
Áp dụng bđt bu nhi ta có
\(\sqrt{2\left(x^2+y^2\right)}\ge x+y\) (1)
mà x+y+z=1\(\Rightarrow xy+z=xy+z\left(x+y+z\right)=\left(z+x\right)\left(z+y\right)\)
áp dụng bu nhi a ta có \(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\) (2)
từ (1) và (2) => \(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\ge x+y+z+\sqrt{xy}=1+\sqrt{xy}\)