so sánh\(\dfrac{189}{398}v\text{à}\dfrac{187}{394}\)
bài này ai lm đc thì giúp mk vs, mk đang cần gấp
nhớ ghi cách giải nx nhé mn !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=355+\frac{354}{2}+\frac{353}{3}+...+\frac{2}{354}+\frac{1}{355}\)
\(A=1+\left(\frac{354}{2}+1\right)+...+\left(\frac{2}{354}+1\right)+\left(\frac{1}{355}+1\right)\)
\(A=1+\frac{356}{2}+...+\frac{356}{354}+\frac{356}{355}\)
\(A=\frac{356}{356}+\frac{356}{2}+...+\frac{356}{354}+\frac{356}{355}\)
\(A=356.\left(\frac{1}{2}+...+\frac{1}{354}+\frac{1}{355}+\frac{1}{356}\right)\)
Sorry , mk biết làm đến bước đấy thôi
sin 650=cos 350
\(cos70^0=sin30^0\)
\(tan80^0=cot20^0\)
\(cot68^0=tan32^0\)
a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)
b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)
=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)
check giùm mik
Bài 1:
a: \(\sqrt{0.49a^2}=-0.7a\)
b: \(\sqrt{25\left(a-7\right)^2}=5a-35\)
c: \(\sqrt{a^4\left(a-2\right)^2}=a^2\cdot\left(a-2\right)\)
d: \(\dfrac{1}{a-3b}\cdot\sqrt{a^6\left(a-3b\right)^2}\)
\(=\dfrac{1}{a-3b}\cdot a^3\cdot\left(a-3b\right)=a^3\)
Bài 2:
a: \(2\left(x+y\right)\cdot\sqrt{\dfrac{1}{x^2+2xy+y^2}}\)
\(=2\left(x+y\right)\cdot\dfrac{1}{x+y}\)
=2
b: \(\dfrac{3x}{7y}\cdot\sqrt{\dfrac{49y^2}{9x^2}}\)
\(=\dfrac{3x}{7y}\cdot\dfrac{-7y}{3x}\)
=-1
\(\dfrac{189}{199}>\dfrac{187}{197}\Rightarrow\dfrac{189}{398}>\dfrac{187}{394}\)
Vì \(\dfrac{189}{398}\) > \(\dfrac{187}{398}\) và \(\dfrac{189}{394}\) >\(\dfrac{187}{394}\) nên \(\dfrac{189}{398}\) >\(\dfrac{187}{394}\)