Chứng minh rằng:
M=43^43-17^17 chia hết cho 10
Giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
43^1 =43. tận cùng là số 3
43^2= 1849 tận cùng là số 9
43^3 =79507 tận cùng là số 7
43^4 =3418801 tận cùng là số 1
43^5 = 147008443 tiếp tục tận cùng là số 3
vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1
ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7
tương tự ta có số tận cùng của 17^17 là 7.
vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)
43^1 =43. tận cùng là số 3
43^2= 1849 tận cùng là số 9
43^3 =79507 tận cùng là số 7
43^4 =3418801 tận cùng là số 1
43^5 = 147008443 tiếp tục tận cùng là số 3
vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1
ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7
tương tự ta có số tận cùng của 17^17 là 7.
vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)
Số có tận cùng là 3 khi nâng lên lũy thừa mũ 4n có tận cùng là 1
Do đó 4343 = 434.10+3=434.10.433= ( .....1 ) . ( ......7 ) = .....7
số có tận cùng là 7 khi nâng lên lúy thùa mũ 4n có tận cũng là 1
Do đó 1717=174.4+1 = 174.4.17= ( ....... 1 ) . ( ........7 ) = .......7
4343-1717 = ......7 - .......7 = ........0
Số có tận cùng là 0 chia hết cho 10
Vậy 4343-1717 chia hết cho 10 ( dpcm )
Gõ link này là có: http://olm.vn/hoi-dap/question/1081594.html
Ta có : 10n có tổng các chữ số bằng 1 (\(\forall n\in N\)) (1)
53 = 125 (tổng các chữ số bằng 8) (2)
Từ (1),(2) => 10n + 53 có tổng các chữ số bằng 9 \(⋮9\)
@Hưng Nguyễn
a, Đặt A = 10n + 53
=> A = 1000......0(có n số 0) + 125
=> Tổng các chữ số của A là 1 + 0 + 0 + 0 + ....+ 1 + 2 +5 = 9
Mà 9 chia hết cho 9
=> A chia hết cho 9
a ) Đặt B = 10^n + 5^3
= 10^n + 125
Tổng các chữ số của B là 1 + 1 + 2 + 5 = 9
Mà 9 chia hết cho 9
=> B chia hết cho 9
b ) 43^43 - 17^17 chia hết cho 10
Có 43^1 = 43
43^5 = ....3
43^9 = ....3
...
Ta thấy các mũ số cứ cách nhau 4 đơn vị . Mà ( 43 - 1 ) : 4 = 10 ( dư 2 ) nên tận cùng của 43^43 là 3 . 3 . 3 = 27
=> 43^43 có tận cùng là 7
Tương tự với 17^17 ta có kết quả là 7
Vì 7 - 7 = 0 nên 43^43 - 17^17 chia hết cho 10 ( do số có tận cùng là 0 thì chia hết cho 10 )
Bài 7 :43^1 =43. tận cùng là số 3
43^2= 1849 tận cùng là số 9
43^3 =79507 tận cùng là số 7
43^4 =3418801 tận cùng là số 1
43^5 = 147008443 tiếp tục tận cùng là số 3
vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1
ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7
tương tự ta có số tận cùng của 17^17 là 7.
vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)
Bài 8 : \(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có : lũy thừa tận cùng là 9 khi nâng bậc lũy thừa chẵn nên tận cùng là 1.
=> \(49^{500}\) tận cùng là 1
=> \(9^{500}\) tận cùng là 1
=> (...1) - (....1) = (....0)
Vì tận cùng là 0 nên chia hết cho 10
Vậy 71000 - 31000 chia hết cho 10 (đpcm)
CM:\(\overline{ab}+\overline{ba}⋮11\)
Ta có :\(\overline{ab}=10a+b\)
\(\overline{ba}=10b+a\)
\(\Rightarrow\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b\)
Mà 11b\(⋮\) 11 kí hiệu là 1
11a \(⋮\) 11 kí hiệu là 2
Từ 1 và 2 \(\Rightarrow\) 10a+b+10b+a chia hết cho 11 (t/chất chia hết của 1 tổng)
\(\Rightarrow\overline{ab}+\overline{ba}⋮11\)
Ta có: \(43^{43}=43^{40}.43^3\)
Lại có: 4340tận cùng 1; 433 tận cùng 7
=>4343tận cùng 7(*)
1717=1716.17
Mà 1716tận cùng 1
=>1717tận cùng 7(**)
Từ (*) và (**) suy ra 4343-1717tận cùng 0
\(\Rightarrow43^{43}-17^{17}⋮10\)