Anh em giup nha. CMR:
\(\sqrt{2\sqrt{ }3\sqrt{ }4...\sqrt{ }2000}< 3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2000}}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.\frac{1999+2001}{2}}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.2000}}}}< ...< \sqrt{2.\frac{3+5}{2}}\)
\(=\sqrt{2.4}=\sqrt{8}< 3\)
Ta có:
\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{2000.2002}}}}\)
\(=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2001^2-1}}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}\)
\(........................................\)
\(< \sqrt{2.4}=\sqrt{8}< 3\)
\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2000}}}}}< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.2000}}}}< ...< \sqrt{2.4}< 3\)
Có cách giải nhưng t ko chắc đâu nhá;) đã bảo đưa dạng a, b, c rồi mà cứ đưa dạng này-_-
\(VT< \sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{6....}}}}}=x>0\) (vô hạn dấu căn). Ta sẽ chứng minh x < 3
Ta thấy \(x^2=\sqrt{2}.x\Rightarrow x\left(x-\sqrt{2}\right)=0\Rightarrow x=\sqrt{2}< 3\Rightarrow\text{đpcm }\)