(4n+3)chia hết (2n+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
\(\dfrac{4n-11}{4n-8}\)=\(\dfrac{4n-8-3}{4n-8}=\dfrac{4n-8}{4n-8}+\dfrac{-3}{4n-8}=1+\dfrac{-3}{4n-8}\)
\(\Rightarrow\)-3 \(⋮\) 4n - 8
\(\Rightarrow\)4n-8 \(\in\) Ư (-3) ={\(\pm\)1; \(\pm\)3}
Ta có bảng sau:
4n-8 | -1 | 1 | -3 | 3 |
n | \(\dfrac{7}{4}\) | \(\dfrac{9}{4}\) | \(\dfrac{5}{4}\) | \(\dfrac{11}{4}\) |
Vậy x \(\in\){ \(\varnothing\) }
b, Ta có:
2n + 1 \(⋮\) n + 1
\(\Rightarrow\) 2.(n+1) \(⋮\) n+1
\(\Rightarrow\)2 \(⋮\) n+1
\(\Rightarrow\) n+1 \(\in\) Ư (2) = { -1 ; -2; 1; 2 }
Ta có các trường hợp sau:
n + 1 = -1 \(\Rightarrow\) n= -2
n + 1 = -2 \(\Rightarrow\) n= -3
n + 1 = 1 \(\Rightarrow\) n= 0
n + 1 = 2 \(\Rightarrow\) n= 1
Vậy n \(\in\) { -2;-3;0;1 }
a) n+3 chia hết cho n-1
=> n-1+4 chia hết cho n-1
=> 4 chia hết cho n-1 ( vì n-1 chia hết cho n-1)
=> n-1 thuộc Ư(4)={1;2;4}
Với n-1=1 => n=2
với n-1=2=>n=3
Với n-1=4=>n=5
Vậy...
b) 4n+3 chia hết cho 2n-1
=> 4n-2+5 chia hết cho 2n-1
=> 5 chia hết cho 2n-1
=> 2n-1 thuộc Ư(5)={1;5}
Với 2n-1=5=> 2n=6=> n=3
Với 2n-1=1=> 2n=2=> n=1
Vậy...
c) 4n-5 chia hết cho 2n-1
=> 4n-2+7 chia hết cho 2n-1
=> 7 chia hết cho 2n-1( vì 4n-2 chia hết cho 2n-1)
=> 2n-1 thuộc Ư(7)={1;7}
Với 2n-1=1=> n=1
Với 2n-1=7=> n=4
Vây..
k cho mk
mình đang gấp mình giải 1 phần phần kia tương tự nha dễ lắm
ta có 2n+3 \(⋮\)n-1
=> (2n-2)+5\(⋮\)n-1 ( vì 2n +3 =(2n-2)+5)
=> 2(n-1)+5\(⋮\)n-1
mà 2(n-1)\(⋮\)n-1
để (2n-2)+5 \(⋮\)n-1
thì 5 chia hết cho n-1
=> n-1 thuộc ước của 5 là 1;-1;5;-5
th1 n-1=1
n=1+1
n=2
....
vay ...
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
Ta có:\(4n+3=4n+2+1=2\left(2n+1\right)+1\)
Để \(4n+3⋮2n+1\) thì \(1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Rightarrow2n\in\left\{-2,0\right\}\)
\(\Rightarrow n\in\left\{-1,0\right\}\)