K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

Nên sửa -2x ở tử thành 2x. Giải như sau :

\(\frac{x^2+2x-1}{2x^2+4x+9}=\frac{\frac{1}{2}\left(2x^2+4x+9\right)-\frac{11}{2}}{2x^2+4x+9}=\frac{1}{2}-\frac{11}{4x^2+8x+18}=\frac{1}{2}-\frac{11}{4\left(x+1\right)^2+14}\)

Biểu thức đạt GTNN khi \(\frac{11}{4\left(x+1\right)^2+14}\)đạt GTLN hay 4(x + 1)2 + 14 đạt GTNN hay khi x = -1

Vậy GTNN của biểu thức là : \(\frac{1}{2}-\frac{11}{14}=-\frac{2}{7}\)khi x = -1

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

1 tháng 5 2017

tui hỏng biết chỉ tui đi hay k cũng được!

bài này tìm GTLN thì có lẽ hay hơn -,- 

C1: \(\frac{x^2-2x+1}{x^2+4x+5}=\frac{\left(x-1\right)^2}{x^2+4x+5}\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

C2: Đặt \(A=\frac{x^2-2x+1}{x^2+4x+5}\)\(\Leftrightarrow\)\(\left(A-1\right)x^2+2\left(2A+1\right)x+5A-1=0\)

+) Nếu \(A=1\) thì \(x=-2\)

+) Nếu \(A\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta'\ge0\)

                                                        \(\Leftrightarrow\)\(\left(2A+1\right)^2-\left(A-1\right)\left(5A-1\right)\ge0\)

                                                        \(\Leftrightarrow\)\(4A^2+4A+1-5A^2+6A-1\ge0\)

                                                        \(\Leftrightarrow\)\(A^2-10A\le0\)

                                                        \(\Leftrightarrow\)\(\left(A-5\right)^2\le25\)

                                                        \(\Leftrightarrow\)\(0\le A\le10\)

\(\Rightarrow\)\(A\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

13 tháng 11 2021

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

13 tháng 11 2021

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

7 tháng 11 2021

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

11 tháng 6 2016

Hỏi đáp ToánHỏi đáp Toán

11 tháng 6 2016

Bn chờ tí , mk làm cho

NV
26 tháng 7 2021

1. Đề bài sai, các biểu thức này chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất

2.

\(A=\left(2x\right)^3-3^3-\left(8x^3+2\right)\)

\(=8x^3-27-8x^3-2\)

\(=-29\) 

\(B=x^3+9x^2+27x+27-\left(x^3+9x^2+27x+243\right)\)

\(=27-243=-216\)

26 tháng 7 2021

 sửa đề lại thành tìm Max nhé1, vì mấy ý này ko có min

\(1,=>D=-\left(x^2-4x-3\right)=-\left(x^2-2.2x+4-7\right)\)

\(=-[\left(x-2\right)^2-7]=-\left(x-2\right)^2+7\le7\)

dấu"=" xảy ra<=>x=2

2, \(E=-2\left(x^2-x+\dfrac{5}{2}\right)=-2[x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4}]\)

\(=-2[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}]\le-\dfrac{9}{2}\) dấu"=" xảy ra<=>x=1/2

3, \(F=-\left(x^2+4x-20\right)=-\left(x^2+2.2x+4-24\right)\)

\(=-[\left(x+2\right)^2-24]\le24\) dấu"=" xảy ra<=>x=-2