K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Lấy ngẫu nhiên 101 số từ tập A. Giả sử 101 số đó là: \(a_1,a_2,...,a_{101}\) ta có thể biễn diễn 101 số đó về dạng.

\(a_1=2^{k_1}b_1;a_2=2^{k_2}b_2;...;a_{101}=2^{k_{101}}b_{101}\) với \(b_1,b_2,...,b_{101}\)là các số lẻ và:

\(1\le b_1,b_2,...,b_{101}\le199\)

Ta thấy rằng từ \(1\rightarrow199\)có 100 số nên tồn tại 2 số \(b_m,b_n\) sao cho: \(b_m=b_n\).

Hay trong 2 số \(a_m,a_n\)có 1 số là bội của số còn lại.

5 tháng 11 2019

= \(1:\frac{1+\sqrt{a}-\sqrt{a}}{1+\sqrt{a}}.\frac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\)

=\(1:\frac{1}{\sqrt{a}+1}.\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)}\)

=\(\left(\sqrt{a}+1\right)\frac{1}{\sqrt{a}+1}\)

=\(1\)

NV
22 tháng 12 2020

\(A=\dfrac{\left(a+b+c+a\right)\left(a+b+c+b\right)\left(a+b+c+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(A\ge\dfrac{2\sqrt{\left(a+b\right)\left(a+c\right)}.2\sqrt{\left(a+b\right)\left(b+c\right)}.2\sqrt{\left(a+c\right)\left(b+c\right)}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=8\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

22 tháng 12 2020

cảm ơn

NV
26 tháng 8 2021

\(VT=\sqrt{\left(2+2a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)

\(VT=\sqrt{\left[a^2-2a+1+a^2+2a+1\right]\left[b^2+2bc+c^2+b^2c^2-2bc+1\right]}\)

\(VT=\sqrt{\left[\left(1-a\right)^2+\left(a+1\right)^2\right]\left[\left(bc-1\right)^2+\left(b+c\right)^2\right]}\)

Bunhiacopxki:

\(VT\ge\left(1-a\right)\left(bc-1\right)+\left(a+1\right)\left(b+c\right)=\left(1+a\right)\left(1+b\right)\left(1+c\right)-2\left(1+abc\right)\)

11 tháng 6 2017

a)  Điều kiện :  \(a\ne-b;b\ne1;a\ne-1\)

\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+a^2b+a-b}{1+a}\)

\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)

\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)

P = a + ab - b

b)

P = 3

<=>  a + ab - b = 3

<=>  a(b+1) - (b+1) +1 - 3 = 0

<=>   (b+1)(a-1)  = 2

Ta có bảng sau với a, b nguyên

b+112-1-2
a-121-2-1
b01-2-3
a32-10
so với đk loạiloại 


Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}

NV
14 tháng 1 2021

\(\Leftrightarrow1+b^2+a^2\left(b^3+b\right)\le\left(2b^3+2\right)a^2-2\left(b^3+1\right)a+2b^3+2\)

\(\Leftrightarrow\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\ge0\)

Xét tam thức bậc 2: \(f\left(a\right)=\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\)

Ta có: \(b^3+2-b\ge3b-b=2b>0\)

\(\Delta'=\left(b^3+1\right)^2-\left(b^3-b+2\right)\left(2b^3-b^2+1\right)\)

\(\Delta'=-\left(b-1\right)^2\left(b^4+b^3-b^2+b+1\right)\le0\) ; \(\forall b>0\)

\(\Rightarrow f\left(a\right)\ge0\) ; \(\forall a\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;1\right)\)

NV
14 tháng 1 2021

\(GT\Leftrightarrow a^2+b^2-2ab=a+b+2\)

\(\Leftrightarrow a^2+a+b^2+b=2\left(ab+a+b+1\right)\)

\(\Leftrightarrow a\left(a+1\right)+b\left(b+1\right)=2\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow\dfrac{a}{b+1}+\dfrac{b}{a+1}=2\)

Đặt \(\left(\dfrac{a}{b+1};\dfrac{b}{a+1}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x;y\ge0\\x+y=2\end{matrix}\right.\)

\(\Rightarrow0\le xy\le1\)

\(P=\left(1+x^3\right)\left(1+y^3\right)=1+x^3+y^3+x^3y^3\)

\(P=1+\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3\)

\(P=\left(xy\right)^3-6xy+9=xy\left[\left(xy\right)^2-6\right]+9\le9\)

Dấu "=" xảy ra khi \(xy=0\Leftrightarrow\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)

31 tháng 1 2023

\(Ta\) \(có:\) \(1+a^2=ab+bc+ca+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(c+a\right)\)

\(1+b^2=ab+bc+ca+b^2=\left(a+b\right)\left(b+c\right)\)

\(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(c+b\right)\)

\(Khi\) \(đó:\) \(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(c+b\right)}\)

\(\Rightarrow A=1\)