Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a chữ số 2 và phép toán lũy thừa, số lớn nhất là : 2.2.2.2 = 24 = 16
Số lớn nhất được tạo bởi 4 chữ số 2 và phép toán lũy thừa là: 2 x 2 x 2 x 2 = 24 = 16
Ủng hộ mk nha ^_-
Nâng lên lũy thừa, hay sự mũ hóa, là quá trình nhân một giá trị của cơ số b với chính nó với số lần cho trước bởi số mũ n thành số hạng b^n. thì lũy thừa mới của b là tích của n nhân với m. ... tuy nhiên số bất kỳ nâng lên lũy thừa 0 đều bằng 1 miễn là giá trị của cơ số của nó không phải là 0.
Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ.
Ví dụ: \(3^{11}:3^9=3^{11-9}=3.3=9\)
chú ý : Mọi số tự nhiên đều viết được dưới dạng tổng các lũy thừa của 10
HT
I. Phép nâng lên lũy thừa
Lũy thừa bậc n của a , kí hiệu an , là tích của n thừa số a :
an = a . a . ... . a với n ∈ N*
n thừa số
Số a được gọi là cơ số, n được gọi là số mũ
VD: 2 . 2 . 2 . 2 . 2 . 2 = 26
Quy ước: a1 = a
a2 còn được gọi là "a bình phương" hay "bình phương của a"
a3 còn được gọi là "a chính phương" hay "chính phương của a"
*Với n là số tự nhiên khác 0, ta có:
10n = 1 0 ... 0.
n chữ số 0
72015 = 72012 . 73 = 74 . 503 . ...3 = ...1 . ...3 = ...3
Suy ra 72015 có chữ số tận cùng là 3
tương tự câu này bạn ơi bạn đọc và làm bài của mình nhé
S=1+2+22+....+22012
A.2 =2+22+23+.........+22013
A.2-A=22013-1
A=22013-1
Ta thấy: 22013-1 < 22013
\(P=n^3+7n^2+25n+39=\left(n+3\right)\left(n^2+4n+13\right)\)
Hiển nhiên \(\left\{{}\begin{matrix}n+3>1\\n^2+4n+13>1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}n+3=p^a\\n^2+4n+13=p^b\end{matrix}\right.\) với \(b>a>0\)
\(\Rightarrow\left\{{}\begin{matrix}n+3⋮p\\n^2+4n+13⋮p\end{matrix}\right.\) \(\Rightarrow n^2+4n+13-\left(n+3\right)\left(n+1\right)⋮p\)
\(\Rightarrow10⋮p\Rightarrow\left[{}\begin{matrix}p=2\\p=5\end{matrix}\right.\)
- TH1: \(p=2\Rightarrow n+3=2^a\)
Do n nguyên dương \(\Rightarrow n+3\ge4\Rightarrow a\ge2\Rightarrow2^a⋮4\)
\(\Rightarrow n+3⋮4\Rightarrow n=4k+1\)
Đồng thời \(n^2+4n+13=2^b\), hiển nhiên \(b>2\Rightarrow n^2+4n+13⋮4\)
\(\Rightarrow\left(4k+1\right)^2+4\left(4k+1\right)+13⋮4\)
\(\Rightarrow4k\left(4k+6\right)+18⋮4\) (vô lý)
\(\Rightarrow p=2\) không thỏa mãn
TH2: \(p=5\) \(\Rightarrow\left\{{}\begin{matrix}n+3=5^a\\n^2+4n+13=5^b\end{matrix}\right.\)
\(\Rightarrow\left(n+1\right)\left(n+3\right)+10=5^b\)
\(\Rightarrow5^a\left(5^a-2\right)+10=5^b\)
\(\Rightarrow5^{a-1}\left(5^a-2\right)+2=5^{b-1}\)
- Với \(a=1\Rightarrow b=2\)
- Với \(a>1\Rightarrow\) vế trái chia 5 dư 2, vế phải chia hết cho 5
\(\Rightarrow\) Không tồn tại a;b nguyên thỏa mãn
Vậy \(a=1\Rightarrow n=5^1-3=2\)
\(=8^{6-4}+3^3-1+2^{20+10}-2^{30}\)
\(=8^2+3^3-1+2^{30}-2^{30}\)
\(=8^2+3^3-1\)
\(=64+27-1\)
\(=90\)