1.22. Trong hộp có 6 bi đỏ, 4 bi xanh và 4 bi trắng. Rút ngẫu nhiên từ hộp ra 2 bi. Tìm xác suất để được:
(a) 2 bi đỏ;
(b) ít nhất 1 bi xanh;
(c) bi thứ hai màu trắng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy ngẫu nhiên một hộp
Gọi A là biến cố lấy được hộp A
Gọi B là biến cố lấy được hộp B
Gọi C là biến cố lấy được hộp C
Vậy P(A) = P(B) = P(C) = 1/3
Gọi D là biến cố “ lấy ngẫu nhiên một hộp, trong hộp đó lại lấy ngẫu nhiên một viên bi và được bi đỏ ” là
Do đó
Chọn D.
Đây là nguồn : [LỜI GIẢI] Một hộp chứa 5 bi trắng, 6 bi đỏ và 7 bi xanh, tất cả các bi có kích - Tự Học 365
C
Số phần tử của không gian mẫu chính là số
cách lấy ngẫu nhiên 6 viên bi bất kì trong 18
viên nên n Ω = C 18 6
Gọi A là biến cố “6 bi lấy được có đủ ba màu
đồng thời hiệu của số bi đỏ và trắng, hiệu của
số bi xanh và đỏ, hiệu của số bi trắng và xanh
theo thứ tự lập thành cấp số cộng”
Gọi t, d, x lần lượt là số bi trắng,bi đỏ và bi xanh
trong 6 viên bi được chọn ra.
Theo bài ta có: d − t , x − d , t − x
lập thành một cấp số cộng.
Do đó: d − t + t − x = 2 x − d ⇔ d = x .
Lại có t+d+x=6 nên ta có các trường hợp.
Trường hợp 1. d = x = 1 và t = 4. Khi đó số cách chọn 6 viên bi là C 6 1 C 7 1 C 5 4 = 210 cách.
Trường hợp 2. t = d = x = 2. Khi đó số cách chọn 6 viên bi là C 6 2 C 7 2 C 5 2 = 3150 cách.
Vậy số phần tử của biến cố A là n A = 210 + 3150 = 3360
Do đó xác suất của biến cố A là P A = n A n Ω = 3360 C 18 6 = 40 221
Gọi A là biến cố: “trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ.”
Trong hộp có tất cả: 5+ 15 + 35 = 55 viên bi
- Số phần tử của không gian mẫu: Ω = C 55 7 .
- A ¯ là biến cố: “trong số 7 viên bi được lấy ra không có viên bi màu đỏ nào.”
=> n A ¯ = C 20 7 .
Vì A và A ¯ là hai biến cố đối nên: n A = Ω − n A ¯ = C 55 7 − C 20 7 .
Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ là P A = C 55 7 − C 20 7 C 55 7 .
Chọn đáp án B.
Phép thử : Rút lần lượt hai viên bi
Số phần tử của không gian mẫu: n Ω = 9.10 = 90
Biến cố A : “Rút được một bi xanh, một bi đỏ”
Có 4 cách chọn 1 viên bi xanh và 6 cách chọn 1 bi đỏ nên n (A)= 4.6 = 24
Xác suất của biến cố A: P ( A ) = 24 90 = 4 15
Chọn đáp án D.
`\Omega_1=C_9 ^1=9`
`\Omega_2=C_13 ^2=78`
`@TH1:`
Gọi `A:`"Lấy từ hộp thứ nhất viên bi trắng."
`=>A=C_5 ^1=5`
`=>P(A)=5/9`
Gọi `B:`" Lấy từ hộp thứ hai `2` viên bi trắng."
`=>B=C_8 ^2=28`
`=>P(B)=5/9 . 28/78=70/351`
`@TH2:`
Gọi `C:`"Lấy từ hộp thứ nhất viên bi xanh."
`=>C=C_4 ^1=4`
`=>P(C)=4/9`
Gọi `D:`" Lấy từ hộp thứ hai `2` viên bi trắng."
`=>D=C_7 ^2=21`
`=>P(D)=4/9 . 21/78=14/117`
Đáp án B
TH1. Gieo con xúc sắc với số chấm xuất hiện là số 1 hoặc 6
Khi đó, lấy một viên bi xanh trong hộp A nên xác suất cần tính là
P 1 = 2 6 . 5 8 = 5 24
TH1. Gieo con xúc sắc với số chấm xuất hiện là 2 , 3 , 4 , 5
Khi đó, lấy một viên bi xanh trong hộp B nên xác suất cần tính là
P 2 = 4 6 . 3 5 = 2 5
Vậy xác suất của biến cố cần tính là
Không gian mẫu: \(C_{14}^2\)
a. Số cách rút ra 2 bi đỏ: \(C_6^2\)
Xác suất: \(\dfrac{C_6^2}{C_{14}^2}=\dfrac{15}{91}\)
b. Số cách rút 2 viên không có viên xanh nào (nghĩa là 2 viên thuộc 10 viên đỏ hoặc trắng): \(C_{10}^2\) cách
\(\Rightarrow C_{14}^2-C_{10}^2\) cách rút ra ít nhất 1 viên trắng
Xác suất: \(\dfrac{C_{14}^2-C_{10}^2}{C_{14}^2}=\dfrac{46}{91}\)
c. Có 2 trường hợp: bi thứ nhất màu trắng và bi thứ nhất không phải màu trắng.
Xác suất: \(\dfrac{C_4^2}{C_{14}^2}+\dfrac{C_{10}^1}{C_{14}^1}.\dfrac{C_4^1}{C_{13}^1}=\dfrac{2}{7}\)