a) n + 11 chia hết cho n - 1
b) 7n chia hết cho n - 3
c) \(^{ }n^2\)+ 2n + 6 chia hết cho n + 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.
2n + n +7n +1 2n -1 n +n +4 2n -n 2n + 7n +1 2n -n 8n +1 8n -1 2 3 2 3 2 2 2 2 để 2n3+n2 +7n+1 chia hết cho 2n-1 thì 2 \(⋮2n-1\)
=>2n-1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
ta có bảng sau
2n-1 | -1 | 1 | -2 | 2 |
n | 0 | 1 | \(\dfrac{-1}{2}\) | 1,5 |
tm | tm | loại | loại |
vậy n \(\in\left\{0;1\right\}\)
a) 7n chia hết cho n+4
=> 7(n+4) -28 chia hết cho n+4
=> 28 chia hết cho n+4 ( Vì : 7(n+4) chia hết cho n+4 với mọi STN n )
=> n+4 thuộc Ư(27)= { \(\pm1;\pm3;\pm9;\pm27\) }
Đến đây bạn lập bảng gt rồi tìm ra x nhé.
b) n^2 + 2n + 6 chia hết cho n +4
=> n(n+4)-2(n+4)+14 chia hết cho n + 4
=> (n+4)(n-2)+14 chia hết cho n + 4
=> 14 chia hết cho n + 4 ( Vì : (n+4)(n-2) chia hết cho n + 4 với mọi STN n )
=> n+4 thuộc Ư(14)= {\(\pm1;\pm2;\pm7;\pm14\)}
Lập bảng giá trị rồi tìm ra x nha bạn
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
a) điều kiện \(n\in Z\)
\(n^2+2n+4=n^2+2n+1+3=\left(n+1\right)^2+3\) chia hết cho 11
\(\Leftrightarrow\left(n+1\right)^2+3\) thuộc ước của 11 là \(\pm1;\pm11\)
ta có : \(\left\{{}\begin{matrix}\left(n+1\right)^2+3=1\\\left(n+1\right)^2+3=-1\\\left(n+1\right)^2+3=11\\\left(n+1\right)^2+3=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(n+1\right)^2=-2\left(vôlí\right)\\\left(n+1\right)^2=-4\left(vôlí\right)\\\left(n+1\right)^2=8\\\left(n+1\right)^2=-14\left(vôlí\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1=\sqrt{8}\\n+1=-\sqrt{8}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=\sqrt{8}-1\left(loại\right)\\n=-\sqrt{8}-1\left(loại\right)\end{matrix}\right.\) vậy không có giá trị nào thỏa mãn
b) điều kiện \(x\in Z\)
\(n^2+2n-4=n^2+2n+1-5=\left(n+1\right)^2-5\) chia hết cho 11
\(\Leftrightarrow\left(n+1\right)^2-5\) thuộc ước của 11 là \(\pm1;\pm11\)
ta có : \(\left\{{}\begin{matrix}\left(n+1\right)^2-5=1\\\left(n+1\right)^2-5=-1\\\left(n+1\right)^2-5=11\\\left(n+1\right)^2-5=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(n+1\right)^2=6\\\left(n+1\right)^2=4\\\left(n+1\right)^2=16\\\left(n+1\right)^2=-6\left(vôlí\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}n+1=\sqrt{6}\\n+1=-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=2\\n+1=-2\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=4\\n+1=-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}n=\sqrt{6}-1\left(loại\right)\\n=-\sqrt{6}-1\left(loại\right)\end{matrix}\right.\\\left\{{}\begin{matrix}n=1\left(tmđk\right)\\n=-3\left(tmđk\right)\end{matrix}\right.\\\left\{{}\begin{matrix}n=3\left(tmđk\right)\\n=-5\left(tmđk\right)\end{matrix}\right.\end{matrix}\right.\)
vậy \(n=1;n=-3;n=3;n=-5\)
Các bạn chú ý dấu { và [. Các dấu này khác nhau và việc dùng sai chúng dẫn tới lời giải của bài toán sai hoàn toàn.
- Dấu { có nghĩa là " và " hay " đồng thời xảy ra" thường chỉ dùng trong tìm điều kiện xác định hoặc những cái nào cần nhiều hơn 2 điều kiện.
- Dấu [ có nghĩa là hoặc : nghĩa là cái này xảy ra hoặc cái kia xảy ra, không nhất thiết cả hai cái cùng xảy ra.
Ví dụ: \(\left(n+1\right)^2\) là ước của 5. Như vậy có 4 trường hợp độc lập xảy ra và việc tồn tại của trường hợp này độc lập so với trường hợp khác nên ta dùng dấu [ để chia các trường hợp. Nếu dùng dấu { - có nghĩa là mọi điều kiện phải thỏa mãn - điều này sai về lô-gic khi \(\left(n+1\right)^2\) không thể vừa bằng 1 và vừa bằng 5 được.
Các bạn chú ý các lỗi sai về lô-gic sẽ bị trừ điểm rất nặng trong bài thi.
Ta có:
n+11 chia hết cho n-1
=> n+11 -(n-1) chia hết cho n-1
=> 12 chia hết cho n-1
=> n-1 E Ư(12)
=> n-1 E {+-1;+-2;+-4;+-6;+-12}
CHịu khó xét nha
7n chia hết cho n-3
=> 7n-7(n-3) chia hết cho n-3
=> 21 chia hết cho n-3
=> n-3 E Ư(21)
=> n-3 E {+-1;+-3;+-7;+-21}
Tự xét
n2+2n+6 chia hết cho n+4
Ta có:
n(n+4) chia hết cho n+4
=> n2+4n chia hết cho n+4
=> n2+4n-n2-2n-6 chia hết cho n+4
=>2n-6 chia hết cho n+4
=>2(n+4)-(2n-6) chia hết cho n+4
=>14 chia hết cho n+4
CHịu khó làm tiếp