Cho tam giác nhọn abc. Đường cao bd và ce. Đường phân giác bm của tam giác abd và đường phân giác cn của tam giác ace. Ce giao bm tại h, cn giao bd tại k.
a) Chứng minh cn vuông góc với bm
b) chứng minh nmkh là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\triangle BEC \) vuông tại E có: \(EB^2+EC^2=BC^2\qquad (1)\) (định lý Pythagoras)
Tương tự như trên, ta có:
\(BD^2+DC^2=BC^2\qquad (2)\),
\(BD^2+DC^2=BD^2\qquad (3 )\),
\(DN^2+NC^2=DC^2\qquad(4)\),
\(EM^2+MB^2=BE^2\qquad(5)\),
\(EN^2+NC^2=EC^2\qquad(6)\).
Từ \((1)\) và \((2)\), suy ra: \(BE^2+EC^2=BD^2+DC^2(=BC^2)\).
Thay \((3)\), \((4)\), \((5)\) và \((6)\) vào đẳng thức trên, ta được:
\((ME^2+MB^2)+(EN^2+NC^2)=(DM^2+MB^2)+(DN^2+NC^2)\\ \Leftrightarrow ME^2+EN^2=MD^2+DN^2\\ \Leftrightarrow ME^2+(ED+DN)^2=(ME+ED)^2+DN^2\\ \Leftrightarrow ME^2+ED^2+2ED\cdot DN+DN^2=ME^2+2ME\cdot ED+ED^2+DN^2\\ \Leftrightarrow 2DE\cdot DN=2ME\cdot ED \Leftrightarrow DN=ME \space\text{(đpcm)}\)
a: Xét ΔABD và ΔECA có
AB=EC
góc ABD=góc ECA
BD=AC
=>ΔABD=ΔECA
b: ΔABD=ΔECA
=>AD=EA
=>ΔAED cân tại A