cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6 ( làm cách diricle giùm mình)
ai nhanh tick cho cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba số tự nhiên liên tiếp là p ; p + 1 và p + 2
Vì p và p + 2 đều là số nguyên tố nên số ở giữa p + 1 phải chia hết cho 2 ( 1 )
Mà 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3. Vì 2 số kia là số nguyên tố
=> p + 1 chia hết cho 3 ( 2 ). Từ ( 1 ) ( 2 ) => p + 1 chia hết cho 2 và 3 <=> p + 1 chia hết cho 6
p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1⋮⋮2 (1)
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.
Dạng 3k+1 không xảy ra.
Dạng 3k+2 cho ta p+1⋮3 (2).
Từ (1) và (2) cho ta p+1⋮6
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
vì p là SNT lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2 và p lẻ (K thuộc N*)
Mà p+2 cũng là SNT nên p có dạng 3k+2
p+1=3k+2+1=3(k+1) chia hết cho 3
Mà p lẻ => p +1 chia hết cho 2
=> p chia hết cho 6
p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1 ⋮ 2 (1)
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.
Dạng 3k+1 không xảy ra.
Dạng 3k+2 cho ta p+1 ⋮ 3 (2).
Từ (1) và (2) cho ta p+1 ⋮ 6
Số nguyên tố > 3 luôn tồn tại dưới dạng 3k + 1 hoặc 3k + 2
Nếu p = 3k + 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3
Vậy p không tồn tại ở dạng 3k + 1
=> p = 3k + 2
=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3
Mà các số nguyên tố lớn hơn 3 đều là số lẻ
=> p + 1 là số chẵn <=> chia hết cho 2
p + 1 vừa chia hết cho 2 , vừa chia hết cho 3
=> p + 1 chia hết cho 6
bạn có thể làm cách đi-ric-lê