cho n thuộc N chứng tỏ rằng n2 +n+1
không chia hết cho 4
và
không chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Nếu n=2k(kEN)
thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)
Nếu n=2k+1(kEN)
thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)
Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2
b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n
Nếu n=2k(kEN )
thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)
Nếu n=2k+1(kEN)
thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................
tương tự, n=3k;3k+1;3k+2
mỏi tay chết đi được, mấy con số còn bay đi lung tung
a) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)⋮2\)vì \(n\left(n+1\right)\)là tích 2 số TN liên tiếp . Do đó \(n\left(n+1\right)+1\)không chia hết cho 2
b) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)\)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra \(n\left(n+1\right)\)tận cùng bằng 1,3,7 không chia hết cho 5
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
+) Nếu n=0 thì \(5^0-1=1-1=0\) chia hết cho 4
+) Nếu n=1 thì \(5^1-1=5-1=4\) chia hết cho 4
+) Nếu \(n\ge2\) thì \(5^n-1=\left(.....25\right)-1=\left(.....24\right)\) chia hết cho 4
Vì 24 chia hết cho 4
Vậy \(5^n-1\) chia hết cho 4 với \(n\inℕ^∗\)
=> ĐPCM
A=n(n+1)+1
n(n+1) luôn chia hết cho 2
n(n+1) không chia hết cho với n khác 5
Do đó A ko chia hết cho 2 và 5
Chứng minh k chia hết cho 4:
Ta có:n^2+n+1=n(n+1)+1
n(n+1) là tích của 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2. Mà 1 không chia hết cho 2
=n(n+1)+1 không chia hết cho 2
Suy ra: n(n+1)+1 không chia hết cho 4
Hoặc n^2+n+1 không chia hết cho 4
Chứng minh không chia hết cho 5:
Ta có: n^2+n+1=n(n+1)+1
n+(n+1) là tích của số tự nhiên liên tiếp nên có chữ số tận cùng là: 0;2;6
Suy ra: n(n+1)+1 có chữ số tận cùng là:1;3;7
Mà các chữ số tận cùng khác 0 hoặc 5 thì k chia hết cho 5
Vậy n(n+1)+1 không chia hết cho 5
Hay:n^2+n+1 không chia hết cho 5
Đặt A = n^2+n+2
Có : A = n^2+n+1 = (n^2+n) + 1 = n.(n+1)+1
Ta thấy n và n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1) chia hết cho 2
=> n.(n+1)+1 ko chia hết cho 2 nên n.(n+1)+1 ko chia hết cho 4