K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2024

Ta có : a chia 6 dư 2 => a - 2 chia hết cho 6 => a - 2 + 12 chia hết cho 6 => a + 10 chia hết cho 6

a chia 7 dư 4 => a - 4 chia hết cho 7 => a - 4 + 14 chia hết cho 7 => a + 10 chia hết cho 7

=> a + 10 chia hết cho 6 và 7

=. a + 10 thuộc BC ( 6 ; 7 )

Mà BCNN ( 6 ; 7 ) = 42

=> a + 10 thuộc B ( 42 ) = { 0 ; 42 ; ... }

=> a + 10 chia 42 dư 42

=> a chia 42 dư 32

Vậy số a chia cho 42 dư 32

26 tháng 9 2014

số chia là 14 thì số dư lớn nhất là : 14 - 1 = 13

Số bị chia là : 14 x 5 + 13 = 83

13 tháng 11 2016

Đề của bạn sai rồi bạn ơi, nếu khi chia nó cho 5 dư 5, thì phép tính đó từ dư thành chia hết rồi.

13 tháng 11 2016

Sai đề rồi! 

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
20 tháng 11 2014

số a chia 4 dư 3 ; chia 5 dư 4 ; chia 6 dư 5 nên ( a + 1 ) chia hết cho cả 4 ; 5 và 6

ta có BSCNN của 4.5 ,6 là : 60 => các BS của 60 có dạng 60 k

vì 200 < a < 400 nên  k có thể là 4 , 5 , 6 khi đó a +1 =  240 , 300 , 360

                                                                        nên a    =  239 ,299 , 359

9 tháng 8 2016

Nguyễn Hồng Trang

olm-logo.png

Bài toán 1: Tìm số tự nhiên bé nhất khác 1 và khi chia số đó cho 2; 3; 4; 5 và 6 thì cùng có số dư bằng 1.Bài toán 2: Tìm số tự nhiên bé nhất sao cho khi chia số đó cho 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4 và 5.Bài toán 3: Hai số tự nhiên có hiệu là 133 và biết khi lấy số lớn chia cho số bé thì được thương là 4 và số dư là 19. Tìm số...
Đọc tiếp

Bài toán 1: Tìm số tự nhiên bé nhất khác 1 và khi chia số đó cho 2; 3; 4; 5 và 6 thì cùng có số dư bằng 1.

Bài toán 2: Tìm số tự nhiên bé nhất sao cho khi chia số đó cho 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4 và 5.

Bài toán 3: Hai số tự nhiên có hiệu là 133 và biết khi lấy số lớn chia cho số bé thì được thương là 4 và số dư là 19. Tìm số lớn.

Bài toán 4: Hai số tự nhiên có tổng là 258 và biết khi lấy số lớn chia cho số bé thì được thương là 2 và số dư là 21. Tìm số bé.

Bài toán 5: Hai số tự nhiên có hiệu là 245 và biết khi lấy số lớn chia cho số bé thì được thương là 3 và số dư laf 41. Tìm số lớn.

Ai trả lời cho mk cũng sẽ được tick đúng và đặc biệt là người nhanh nhất. chỉ cần ghi đáp án thôi nha! Mk cảm ơn các bạn

 

3
20 tháng 10 2018

à bài này t học qua rồi

nhưng t ngại làm

bạn chờ  người khác làm nhé

21 tháng 10 2018

ủa mà bài này dễ mà                                                                                                                                                                                             cho hỏi bạn học lớp mấy vậy

b) Để M là số nguyên thì \(2n-7⋮n-5\)

\(\Leftrightarrow2n-10+3⋮n-5\)

mà \(2n-10⋮n-5\)

nên \(3⋮n-5\)

\(\Leftrightarrow n-5\inƯ\left(3\right)\)

\(\Leftrightarrow n-5\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{6;4;8;2\right\}\)

Vậy: \(n\in\left\{6;4;8;2\right\}\)

a) Ta có: \(\left|x-3\right|=2x+4\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x+4\left(x\ge3\right)\\x-3=-2x-4\left(x< 3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2x=4+3\\x+2x=-4+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=7\\3x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(loại\right)\\x=-\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(x=-\dfrac{1}{3}\)