K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2024

mày đao  à

 

9 tháng 11 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hãy chứng minh rằng MNPQ là hình chữ nhật.

17 tháng 11 2022

Xét ΔCDB có CN/CD=CP/CB

nên NP//BD và NP=DB/2

Xét ΔEDB có EM/ED=EQ/EB

nên MQ//BD và MQ=BD/2

=>NP//MQ và NP=MQ

Xét ΔDEC có DN/DC=DM/DE

nên MN//EC

=>MN vuông góc với AB

=>MN vuông góc với NP

Xét tứ giác MNPQ có

NP//MQ

NP=MQ

MN vuông góc với NP

Do đó: MNPQ là hình chữ nhật

=>M,N,P,Q cùng thuộc 1 đường tròn

21 tháng 6 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA của hình chữ nhật ABCD.

Kẻ đường chéo AC, BD

* Trong ∆ ABC, ta có:

E là trung điểm của AB

F là trung điểm của BC

Nên EF là đường trung bình của  ∆ ABC.

⇒ EF // AC và EF = 1/2 AC (t/chất đường trung bình của tam giác) (1)

Trong  ∆ ADC, ta có: H là trung điểm của AD

G là trung điểm của DC

Nên HG là đường trung bình của tam giác ADC.

⇒ HG // AC và HG = 1/2 AC (t/chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Xét  ∆ AEH và  ∆ DGH, ta có: AH = HD (gt)

∠ EAH và ∠ GDH = 90 °

AE = DG (vì AB = CD)

Suy ra:  ∆ AEH =  ∆ DGH (c.g.c) ⇒ HE = HG

Vậy hình bình hành EFGH là hình thoi (hình bình hành có 2 cạnh kề bằng nhau).

Tham khảo:

Xét tam giác DEC có  

M là trung điểm DE

N là trung điểm DC

MN là đường trung bình của tam giác DEC, hay MN//EC (*) và MN=1/2 EC (1)

* Xét tam giác BEC có 

Q là trung điểm BE

P là trung điểm BC

PQ là đường trung bình của tam giác BEC, hay PQ//EC và PQ=1/2 EC (2).

Từ (1) và (2) suy ra tứ giác MNPQ là hình bình hành.

* Xét tam giác DEB có 

Q là trung điểm BE

M là trung điểm DE

 QM là đường trung bình của tam giác BED, hay MQ//DB  (3).

Mà AB⊥AC (4)

Từ (1), (3) và (4) suy ra MN⊥MQ (5)

Tứ giác MNPQ là hình bình hành mà có một góc vuông  MNPQ là hình chữ nhật.

Gọi I là giao điểm của hai đường chéo MP và QN

Suy ra IM=IN=IP=IQ (tính chất hình chữ nhật)

Nên các điểm M, N, P, Q đều cách đều I một khoảng cố định

M, N, P, Q cùng thuộc một đường tròn.

30 tháng 6 2017

Hình thoi

8 tháng 10 2016

Gọi ABCD là hình chữ nhật 
M,N,P,Q là trung điểm 4 canh AB,BC,CD,DA 
Kẻ đường chéo AC ,BD 
Xét tam giác ABC,ta có M,N là đường trugn binh của tam giác ABC 
=> MN //= 1/2 AC (1) 
Chưng minh tương tự với tam giác ACD => PQ//= 1/2 AC (2) 
Tam giac ABD có MQ là đường trung binh => MQ //=1/2 BD (3) 
Tam giác BDC có NP là đương trung binh => NP //=1/2 BD (4) 
tỪ (1),(2),(3),(4) có AC=BD (đương chéo chữ nhật)=>MN =NP=PQ=QM 
Hay MNPQ là hinh thoi

2 tháng 11 2016

chung minh rang cac trung diem cua 4 canh cua 1 hcn là các đỉnh cua hình thoi

29 tháng 11 2021

Tham khảo: https://loigiaihay.com/bai-75-trang-106-sgk-toan-8-tap-1-c43a3348.html

29 tháng 11 2021

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Xét tam giác ABC có E và F lần lượt là trung điểm của AB và BC

=> EF là đường trung bình của tam giác ABC

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Tương tự tam giác ADC có HG là đường trung bình nên:

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

Từ (1) và (2) suy ra: EF // HG và EF = HG

=> tứ giác EFGH là hình bình hành.

Lại có: EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

Nên Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

Hình bình hành EFGH có Ê = 90º nên là hình chữ nhật

19 tháng 11 2021

Tham kho dưới đây nhé 

 

https://loigiaihay.com/bai-75-trang-106-sgk-toan-8-tap-1-c43a3348.html

19 tháng 11 2021

Xét hcn ABCD có M,N,P,Q là trung điểm AB,BC,CD,DA

Ta thấy MN,PQ lần lượt là đường trung bình tam giác ABC và ACD

Suy ra MN//AC;\(MN=\dfrac{1}{2}AC\) và PQ//AC;\(PQ=\dfrac{1}{2}AC\)

Do đó MN//PQ và MN=PQ

Hay MNPQ là hbh

Lại có NP là đtb tg BCD nên \(NP=\dfrac{1}{2}BD\)

Mà ABCD là hcn nên \(NP=\dfrac{1}{2}BD=\dfrac{1}{2}AC=MN\)

Vậy MNPQ là hthoi (đpcm)

24 tháng 10 2018

Giải bài 75 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Xét tam giác ABD có E và H lần lượt là trung điểm của AB và AD

=> EH là đường trung bình của tam giác

Giải bài 75 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Chứng minh tương tự, ta có:

Giải bài 75 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Lại có, ABCD là hình chữ nhật nên AC = BD (3)

Từ (1), (2), (3) suy ra: EF = FG = GH= HE

=> tứ giác EFGH là hình thoi.

30 tháng 9 2018

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Xét tam giác ABC có E và F lần lượt là trung điểm của AB và BC

=> EF là đường trung bình của tam giác ABC

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Tương tự tam giác ADC có HG là đường trung bình nên:

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

Từ (1) và (2) suy ra: EF // HG và EF = HG

=> tứ giác EFGH là hình bình hành.

Lại có: EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

Nên Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

Hình bình hành EFGH có Ê = 90º nên là hình chữ nhật