Phân tích đa thức thành nhân tử: 7x^3 - a^3b^3 Làm sao vậy mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử:
a) 2x3 - 18x
= 2x . (x2 - 9)
= 2x. (x+3).(x-3)
Làm như vậy đúng k mn :D
Ta có `:`
`x^3 - 7x-6`
`= x^3 - 9x + 2x - 6`
`= x( x^2 - 9 ) + 2( x-3 )`
`= x( x-3 )( x + 3 ) + 2( x-3 )`
`= [ x( x + 3 )+2]( x-3 )`
`= ( x^2 + 3x + 2 )( x-3 )`
`= ( x^2 + 2x + x + 2 )( x-3 )`
`= [x( x+2 ) + ( x + 2 )]( x-3 )`
`= ( x+1)(x+2)(x-3)`
cháu tôi học ghê thế :))
a) 3x3 - 7x2 + 17x - 5
= 3x3 - x2 - 6x2 + 2x + 15x - 5
= x2( 3x - 1 ) - 2x( 3x - 1 ) + 5( 3x - 1 )
= ( 3x - 1 )( x2 - 2x + 5 )
b) Đặt A = a2 + ab + b2 - 3a - 3b + 3
=> 4A = 4a2 + 4ab + 4b2 - 12a - 12b + 12
= ( 4a2 + 4ab + b2 - 12a - 6b + 9 ) + ( 3b2 - 6b + 3 )
= ( 2a + b - 3 )2 + 3( b - 1 )2 ≥ 0 ∀ a, b
hay 4A ≥ 0 => A ≥ 0
Dấu "=" xảy ra <=> a = b = 1
a.
\(3x^3-7x^2+17x-5=3x^3-x^2-6x^2+2x+15x-5\)
\(=\left(3x-1\right)\left[x^2-2x+5\right]\)
b.\(a^2+ab+b^2-3a-3b+3=\left(a-1\right)^2+\left(b-1\right)^2+\left(a-1\right)\left(b-1\right)\)
\(=\left[a-1+\frac{b-1}{2}\right]^2+\frac{3}{4}\left(b-1\right)^2\ge0\)
dấu bằng xảy ra khi \(a-1=b-1=0\Leftrightarrow a=b=1\)
Ta có:x(3x2+4x-7)=x[(3x2-3x)+(7x-7)]=x[3x(x-1)+7(x-1)]=x(x-1)(3x+7)
x3 - 7x2 + 10x
=x3 - 2x2 - 5x2 + 10x
=(x3 -2x2) - (5x2 - 10x)
= x2( x - 2) - 5x( x - 2)
= (x - 2) (x2 - 5x)
Gõ trên máy tính nên hơi lâu
Cảm ơn mình đê
bài j bạn
Sửa đề: \(x^3-a^3b^3=x^3-\left(ab\right)^3\\ =\left(x^3-ab\right)\left(x^2+abx+a^2b^2\right)\)