K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2016

Điều kiện \(\begin{cases}x-1\ge0\\19-x\ge0\end{cases}\)  \(\Leftrightarrow\)  \(x\in\left[1;19\right]\)

Ta thấy ngay phương trình có nghiệm x=10

Nghiệm này thuộc \(\left[1;19\right]\)  

Mặt khác, đặt \(f\left(x\right)=x^2+2x+\sqrt{x-1}\)

                        \(g\left(x\right)=\frac{1000}{x}+\sqrt{19-x}+20\)

Ta dễ dàng kiểm tra \(f\left(x\right)\) là hàm số đồng biến, \(g\left(x\right)\)  là hàm số dị biến trên \(\left[1;19\right]\) 

Vậy \(x=10\) là nghiệm duy nhất của phương trình

4 tháng 3 2018

hello bạn

24 tháng 8 2018

\(x^2+2x-28+8-\sqrt{2x^2+4x+8}=0\)

\(x^2+2x-28+\frac{64-2x^2-4x-8}{8+\sqrt{2x^2+4x+8}}=0\)

\(x^2+2x-28+\frac{-2\left(x^2+2x-28\right)}{8+\sqrt{2x^2+4x+8}}=0\)

\(\left(x^2+2x-28\right)\left(1-\frac{2}{8+\sqrt{2x^2+4x+8}}\right)=0\)

mà \(1-\frac{2}{8+\sqrt{2x+4x+8}}\ne0\Rightarrow x^2+2x-28=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1-\sqrt{29}\\x=-1+\sqrt{29}\end{cases}}\)

24 tháng 8 2018

phần b nx bạn ơi

20 tháng 10 2017

đến câu hỏi tương tự hình như có hay sao á

chúc may mắn
 

7 tháng 11 2017

:Ở bàn học lớp mấy vậy

24 tháng 1 2016

?

24 tháng 1 2016

khó