Tìm GTLN của biểu thức:
A=căn (x.(5-x)) +căn(x.(7-x))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`
`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`
\(A=x-\sqrt{x}+\dfrac{5}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+1\ge1\\ A_{min}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
\(x-\sqrt{x}+\frac{5}{4}\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+\frac{5}{4}\)
Ta có : \(x>0\)
\(\Leftrightarrow\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)+\frac{5}{4}>\frac{5}{4}\)
=> Amin= \(\frac{5}{4}\)
dấu = xảy ra \(\Leftrightarrow\sqrt{x}+1=0\)
Nếu không có thêm điều kiện gì thì biểu thức này không có giá trị lớn nhất bạn nhé.
ĐKXĐ: \(0\le x\le5\)
\(A=\dfrac{1}{\sqrt{35}}.\left(\sqrt{5x\left(35-7x\right)}+\sqrt{7x\left(35-5x\right)}\right)\)
\(A\le\dfrac{1}{2\sqrt{35}}\left(5x+35-7x+7x+35-5x\right)\)
\(A\le\sqrt{35}\)
\(A_{max}=\sqrt{35}\) khi \(\left\{{}\begin{matrix}5x=35-7x\\7x=35-5x\end{matrix}\right.\) \(\Rightarrow x=\dfrac{35}{12}\)