K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB=\sqrt{15^2-9^2}=12\left(cm\right)\)

ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>\(BC=2\cdot BH=24\left(cm\right)\)

Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{15^2+15^2-24^2}{2\cdot15\cdot15}=\dfrac{-7}{25}\)

=>\(sinBAC=\sqrt{1-\left(-\dfrac{7}{25}\right)^2}=\sqrt{1-\dfrac{49}{625}}=\dfrac{24}{25}\)

Xét ΔABC có \(\dfrac{BC}{sinBAC}=2R\)

=>\(2R=24:\dfrac{24}{25}=25\)

=>R=12,5(cm)

DD
23 tháng 5 2021

\(h=\sqrt{b^2-\frac{a^2}{4}}\Rightarrow S=\frac{1}{2}ah=\frac{1}{2}a\sqrt{b^2-\frac{a^2}{4}}\)

\(R=\frac{abb}{4S}=\frac{ab^2}{\sqrt{4b^2-a^2}.a}=\frac{b^2}{\sqrt{4b^2-a^2}}\)

\(r=\frac{S}{p}=\frac{a\sqrt{b^2-\frac{a^2}{4}}}{a+2b}\)

25 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.

Vì tam giác ABC cân tại A nên AH là đường trung trực của BC. Suy ra AD là đường trung trực của BC.

Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC.

Tam giác ACD nội tiếp trong (O) có AD là đường kính nên suy ra góc (ACD) = 90 °

Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có: C H 2  = HA.HD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

15 tháng 8 2019

A B C D 4 6 H O

Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC 

Vì tam giác ABC cân tại A nên AHlà đường trung trực của BC . Nên  AD là đường trung trực của BC . 

Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC 

Tam giác ACD nội tiếp trong (O )  có AD là đường khính suy ra \(\widehat{ACD=90}\)độ 

Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :

\(CH^2=HA.HD\)

\(\Rightarrow\)\(HD=\frac{CH^2}{HA}=\frac{\left(\frac{BC}{2}\right)^2}{HA}=\frac{\left(\frac{12}{2}^2\right)}{4}=\frac{6^2}{4}=9cm\)

Ta có \(AD=AH+HD=4+9=13\left(cm\right)\)

Vậy bán kính của đường tròn (O )  là :

 \(R=\frac{AD}{2}=\frac{13}{2}=6,5\left(cm\right)\)

Chúc bạn học tốt !!!

17 tháng 8 2016

(Hình)

Diện tích tam giác ABC là:

SABC = 1/2 . AH . BC = 1/2 . 4 . 12 = 24 (cm2)

Vì tam giác ABC cân tại A nên đường cao AH là trung tuyến BC

Nên : BH= HC= 1/2. BC= 1/2 . 12 = 6 (cm)

Trong tam giác AHB:

Áp dụng ĐL pi-ta-go:

 AB2 = AH2 + BH2

AB2 = 42 + 62

AB= \(2\sqrt{13}\) (cm)

Vì tam giác ABC cân tại A nên : AB = AC = \(2\sqrt{13}\) (cm)

Ta có : SABC =\(\frac{AB\cdot AC\cdot BC}{4R}\)   (R là bán kính đường tòn ngoại tiếp tam giác ABC)

<=> \(24=\frac{2\sqrt{13}.2\sqrt{13}.12}{4R}\)

<=> R= \(\frac{13}{2}\) (cm)

OK


 

23 tháng 6 2017

Sự xác định đường tròn. Tính chất đối xứng của đường tròn

31 tháng 7 2019

chúng cơm chúng à

1 tháng 8 2019

Ta có công thức tính diện tích tam giác khi biết các cạnh của tam giác và bán kính đường tròn ngoại tiếp là: 

\(S=\frac{abc}{4R}\); với R là bán kính đường tròn ngoại tiếp và; a, b, c lần lượt là các cạnh của tam giác.

Bài giải:

A B C H

Ta có tam giác AB=AC =10 cm

Kẻ đường cao BH

=> BH= CH= 12:2 =6cm

Áp dụng định lí Pitago 

=> AH^2 =AC^2-HC^2=10^2-6^2=64

=> AH = 8 cm

=> Diện tích tam giác ABC: S= AH.BC:2=48 (cm^2)

Mặt khác \(S=\frac{AB.AC.BC}{4R}\Rightarrow R=\frac{AB.AC.BC}{4S}=\frac{10.10.12}{4.48}=6,25\left(cm\right)\)

Vậy bán kính đường tròn ngoại tiếp bằng 6,25 cm.

4 tháng 8 2021

Sửa lại giúp mình là BC=12cm