mn lm giup e vs a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn vẽ hình nhé.
a) Xét tam giác ABM và tam giác ACM có:
BM = CM (M trđ BC)
AB=AC(gt)
AM cạnh chung
Nên tam giác ABM = tam giác ACM (c.c.c)
b) Xét tam giác BMN và tam giác CMN có:
BM=MC(M trđ BC)
NM cạnh chung
góc NMB = góc NMC ( tam giác AMB = tam giác AMC)
Nên tam giác BMN = CMN (cgc)
c) Từ c/m a có: tam giác BAM = tam giác CAM => góc BAM=góc CAM
kết hợp AM nằm giữa AB và AC => AM ph/g BAC hay AN ph/giác BAC
bạn tự vẽ hình
a, xét tam giác ABM và tam giác ACM có :
AB=AC (gt)
MB=MC (gt)
AM là cạch chung
suy ra tam giác ABM =tam giác ACN (c.c.c)
b, Vì tam giác ABM = tam giác ACN (câu a)
suy ra góc M1= góc M2 (2 góc tương ứng)
mà M1+M2=180 ( 2 góc kề bù)
suy ra : M1=M2= 90
suy ra AM vuông góc BC
c, Vì tam giác ABM = tam giác ACM (câu a)
suy ra : A1=A2 ( 2 góc tương ứng)
suy ra: AM là phân giác góc BAC
bn vẽ hình giùm mik nha
a) xét tam giác ABM và tam giác ACM có:
AM cạnh chung
BM=MC(M trđ BC)
AB=AC(gt)
Nên tam giác ABM = tam giác ACM(ccc)
b) Từ c/m a có: tam giác ABM=tam giác ACM => góc AMB = góc AMC mà AMB+AMC=180 độ(kề bù)
hay 2.AMB=180 độ => AMB=90 độ => AM vuông BC
c) Có tam giác ABM = tam giác ACM => BAM=CAM kết hợp AM nằm giữa AB và AC => AM p/g BAC
a) Ta có tam giác ABC cân tại A
=> góc B= góc C
=> 1/2 góc C= 1/2 góc B
=> ABE=ACF
Xét tam giác ABE và tam giác AFC có:
AB=AC(gt)
A(chung)
ABE=ACF(cmt)
=> tam giac ABE= tam giác ACF(g.c.g)
=> AF=AE
=> tam giác AEF cân tại A
b)Ta có góc B= góc C
=> 1/2 góc B=1/2 góc C=>EBC=FCB
Theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)
=> BE=CF
Xét tam giác BFC vá tam giác CEB có
BE=CF(tam giác ABE= tam giác ACF)
FCB=ECB(cmt)
BC(chung)
=> tam giác BFC= tam giác CEB(c.g.c0
c) Tam giác AFE cân tại A
=>góc AFE=(180*-A)/2
Tam giác ABC cân tại B=>ABC=(180*-A)/2
=> ABC=AFE
=> FE//BC(1)
Ta có: FB=AB-AF
EC=AC-AE
AB=AC
AF=AE
=> FB=EC(2)
Từ (1)(2)=> tứ giác BFEC là hình thang cân
a) Xét tam giác ABD và tam giác EBD có :
AB= BE ( giả thiết ) (1)
Góc B1 = góc B2 ( vì tia BD là tia phân giác ) (2)
BD : cạnh chung (3)
Từ (1) ;(2) và (3) => tam giác ABD = tam giác EBD ( cạnh - góc - cạnh )
b) Vì tam giác ABD = tam giác EBD ( chứng minh ở câu a)
=> góc BAD = góc BED ( cặp góc tương ứng )
Mà góc BAD = 90 độ
=> BED = 90 độ
c) Vì góc BED = 90 độ
=> tam giác BED vuông
d) Vì AH vuông góc với BC ( giả thiết) (1)
và DE vuông góc với BC ( giả thiết ) (2)
Từ (1) và (2) => AH // DE ( điều phải chứng minh).