K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2024

\(\dfrac{1}{5}.\left(x+2\right)^2+\dfrac{1}{3}.\left(2x-2\right)^3=\dfrac{1}{5}.\left(x+2\right)^2+\dfrac{1}{3}.2^3\)

\(\Rightarrow\left(2x-2\right)^3=2^3\)

\(\Rightarrow2x-2=2\)

\(\Rightarrow2x=2+2\)

\(\Rightarrow2x=4\)

\(\Rightarrow x=4\div2\)

\(\Rightarrow x=2\)

Vậy \(x=2\)

12 tháng 8 2024

`1/5 . (x+2)^2 + 1/3 . (2x - 2)^3 = 1/5 . (x+2)^2 + 1/3 . 2^3`

`<=> 1/5 . (x+2)^2 -  1/5 . (x+2)^2+ 1/3 . (2x - 2)^3 = 1/3 . 2^3`

`<=> 0 + 1/3 . (2x - 2)^3 = 1/3 . 2^3`

`<=> 1/3 . (2x - 2)^3 = 1/3 . 2^3`

`<=> 1/3 : 1/3 . (2x - 2)^3 = 2^3`

`<=> 1 . (2x - 2)^3 = 2^3`

`<=> (2x - 2)^3 = 2^3`

`<=> 2x - 2 = 2`

`<=> 2x = 2+2 `

`<=> 2x = 4`

`<=> x = 4 : 2`

`<=> x = 2`

Vậy `x = 2`

4 tháng 6 2016

\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+\sqrt{60}}\)

2 tháng 7 2016

\(\sqrt{\sqrt{5-\sqrt{3x}=}\sqrt{8+\sqrt{60}}}\) k mk nha

3:

a: u+v=14 và uv=40

=>u,v là nghiệm của pt là x^2-14x+40=0

=>x=4 hoặc x=10

=>(u,v)=(4;10) hoặc (u,v)=(10;4)

b: u+v=-7 và uv=12

=>u,v là các nghiệm của pt:

x^2+7x+12=0

=>x=-3 hoặc x=-4

=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)

c; u+v=-5 và uv=-24

=>u,v  là các nghiệm của phương trình:

x^2+5x-24=0

=>x=-8 hoặc x=3

=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)

10 tháng 9 2021

Phương trình ax^2+bx+c=0(a≠0) thỏa mãn điều kiện a+b+c=0 thì có 1 nghiệm x1=1, nghiệm kia x2=c/a

10 tháng 9 2021

Bước 1. Biến đổi phương trình về đúng dạng \(ax^2+bx+c=0\)

Bước 2. Nếu hệ số a chứa tham số, ta xét 2 trường hợp:

   - Trường hợp 1: a = 0, ta giải và biện luận ax + b = 0.

   - Trường hợp 2: a ≠ 0. Ta lập Δ = b2 - 4ac. Khi đó:

      + Nếu Δ > 0 thì phương trình có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\)

      + Nếu Δ = 0 thì phương trình có 1 nghiệm (kép): \(x=\dfrac{-b}{2a}\)

      + Nếu Δ < 0 thì phương trình vô nghiệm.

Bước 3. Kết luận.

Lưu ý:

- Phương trình \(ax^2+bx+c=0\) có nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right..hoặc.\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\end{matrix}\right.\)

- Phương trình \(ax^2+bx+c=0\) có nghiệm duy nhất \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right..hoặc.\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

13 tháng 3 2021

Bài 1:

Thuật toán:

B1: Nhập a,b,c

B2: Tính \(\Delta\) = b2-4ac;

B3: Kiểm tra nếu  \(\Delta\) >0 phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}\text{ }}{2a}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)

B4: Kiểm tra nếu \(\Delta\)<0 thì phương trình vô nghiệm

B5: Kiểm tra nếu \(\Delta\)=0 phương trình có 2 nghiệm kép \(x_1=x_2=-\dfrac{b}{2a}\)

Viết chương trình:

Program HOC24;

var a,b,c: integer;

x1,x2: real;

denta: longint;

begin

write('Nhap a; b; c: '); readln(a,b,c);

denta:=b*b-4*a*c;

if denta>0 then 

begin

write('x1= ',(-b+sqrt(denta))/(2*a):1:2);

write('x2= ',(-b-sqrt(denta))/(2*a):1:2);

end;

if denta<0 then write('Phuong trinh vo nghiem');

if denta=0 then write('x= ',-b/2*a:1:2);

readln

end.

13 tháng 3 2021

Bài 2:

Thuật toán:

B1: Nhập a,b

B2: Kiểm tra nếu a=0 và b=0 thì phương trình có vô số nghiệm

B3: Kiểm tra nếu a=0 thì phương trình vô nghiệm

B4: Kiểm tra nếu a khác 0 thì có nghiệm x=-b/a;

Viết chương trình:

Program HOC24;

var a,b: integer;

x: real;

begin

write('Nhap a; b: '); readln(a,b);

if a=0 and b=0 then write('Phuong trinh co vo so nghiem');

if a=0 then write('Phuong trinh vo nghiem');

if a<>0 then write('x=',-b/a:1:2);

readln

end.

5 tháng 5 2020

Gọi x1,x2 là các nghiệm của phương trình đã cho

Áp dụng hệ thức Vi-et,ta có :

x1 + x2 = -5 ; x1x2 = -1

gọi y1,y2 là các nghiệm của phương trình phải lập,ta được :

y1 + y2 = x14 + x24 , y1y2 = x14x24

Ta có : x12 + x22 = ( x1 + x2 )2 - 2x1x2 = 25 + 2 - 27

Do đó : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12x22 = 729 - 2 = 727

y1y2 = ( x1x2 )4 = 1

Từ đó pt phải lập có dạng : y2 - 727y + 1 = 0

5 tháng 5 2020

Ta co: P = -1 <0 

=> (1) có 2 nghiệm phân biệt khác dấu 

Gọi hai nghiệm đó là \(x_1;x_2\)

=> \(x_1+x_2=-5;x_1.x_2=-1\)

Ta có: \(\left(x_1.x_2\right)^4=\left(-1\right)^4=1\)

\(\left(x_1\right)^4+\left(x_2\right)^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)

\(=\left[\left(-5\right)^2-2.\left(-1\right)\right]^2-2.\left(-1\right)^2\)

\(=727\)

=> Phương trình có các nghiệm lũy thừa bậc 4 của các nghiệm phương trình (1) là: 

\(x^2-727x+1=0\)