K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Đáp án B

 Số phần tử KGM là: 9!. Mà số phần tử của biến cố các học sinh nữ luôn ngồi cạnh nhau là: 3!7! 

Xác suất để các học sinh nữ luôn ngồi cạnh nhau là:  3!7! 9! =   1 12

27 tháng 3 2018

Chọn đáp án C.

31 tháng 7 2017

Đáp án B

 Số phần tử KGM là: 9!. Mà số phần tử của biến cố các học sinh nữ luôn ngồi cạnh nhau là: 3!7! 

Xác suất để các học sinh nữ luôn ngồi cạnh nhau là:  3 ! 7 ! 9 !   =   1 12

24 tháng 12 2019

Chọn D

Số phần tử của không gian mẫu: 

Gọi A là biến cố: “cặp sinh đôi ngồi cạnh nhau và nam nữ không ngồi đối diện nhau”.

Ta tính n() như sau:

Đánh số các ghế ngồi của 8 học sinh như hình vẽ sau:

- Để xếp cho cặp sinh đôi ngồi cạnh nhau có 6 cách.

- Mỗi cách như vậy có  cách đổi chỗ.

 

- Với mỗi cách xếp cặp sinh đôi, ví dụ: Cặp sinh đôi ở vị trí 1 và 2.

Do nam nữ không ngồi đối diện nên:

+ Vị trí 5 và 6 đều có 3 cách.

+ Vị trí 3 có 4 cách, vị trí 7 có 1 cách.

+ Vị trí 4 có 2 cách, vị trí 8 có 1 cách.

 

Suy ra n(A) = 6.2.3.3.4.1.2.1 = 864

13 tháng 11 2017

Chọn B

Số phần tử của không gian mẫu là số cách sắp xếp 8 học sinh vào 8 chỗ ngồi khác nhau. Suy ra  n ( Ω ) = 8!

Gọi A là biến cố xếp 8 học sinh sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau. Ta đánh số các chỗ ngồi từ 1 đến 8 như sau:

Dãy 1:

1

2

3

4

Dãy 2:

8

7

6

5

Để sắp xếp các học sinh ngồi vào vị trí thỏa mãn yêu cầu bài toán ta sắp xếp như sau:

Trường hợp 1: 4 học sinh nam ngồi vào các số lẻ, 4 học sinh nữ ngồi vào các số chẵn. Trường hợp này có 4!4! cách.

Trường hợp 2: 4 học sinh nam ngồi vào các số chẵn, 4 học sinh nữ ngồi vào các số lẻ. Trường hợp này có 414! cách.

Do đó n(A) = 2.4!.4!

Vậy xác suất của biến cố A là 

14 tháng 4 2018

Chọn B.

Phương pháp: Sử dụng hoán vị và quy tắc nhân.

Cách giải: Xếp 12 học sinh vào 12 ghế có 12! cách xếp.

Đánh số ghế  như sau:

1

2

3

4

5

6

7

8

9

10

11

12

Chọn giới tính nam hoặc nữ có 2 cách.

Xếp nam hoặc nữ ngồi vào các ghế 1, 3, 5, 8, 10,12 có 6!= 720 cách.

Xếp các bạn giới tính còn lại vào 6 ghế còn lại có 6!= 720cách.

23 tháng 4 2018

Nam

Nữ

Nam

Nữ

Nam

Nữ

Nữ

Nam

Nữ

Nam

Nữ

nam

Số cách để hai học sinh ngồi đối diện nhau và cạnh nhau luôn khác giới là: 400.2592 = 1036800 (cách)

Số phần tử của không gian mẫu là: 12! = 479001600

3 tháng 9 2018

Đáp án A

Xếp 12 học sinh vào 12 ghế có 12! Cách 

 

Xếp chỗ ngồi cho 2 nhóm học sinh nam – nữ có 2 cách

Trong nhóm có học sinh nam, có 6! Cách sắp xếp 6 học sinh vào 6 chỗ ngồi

Trong nhóm có học sinh nữ, có 6! Cách sắp xếp 6 học sinh vào 6 chỗ ngồi

Suy ra có cách xếp thỏa mãn bài toán.

Vậy 

30 tháng 12 2017

Đáp án A

20 tháng 6 2019

Chọn D

Cách 1. Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế có  cách.

Đánh số ghế lần lượt từ 1 đến 10.

 

Xếp học sinh thỏa mãn bài toán xảy ra hai khả năng sau:

Khả năng 1: Nam ngồi vị trí lẻ, nữ ngồi vị trí chẵn có 5!.5! cách.

Khả năng 2: Nam ngồi vị trí chẵn, nữ ngồi vị trí lẻ có 5!.5! cách.

Vậy có tất cả 2. ( 5 ! ) 2  cách.

Xác suất cần tìm bằng 

Cách 2: Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế, có 10! cách xếp.

Ta chia hai dãy ghế thành 5 cặp ghế đối diện:

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có   cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 3 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 4 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 5 có 1 cách.

Vậy có tất cả  cách xếp thỏa mãn.

Xác suất cần tìm bằng