K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

\(\frac{x^3\left(x-1\right)^3}{\left(x-1\right)^3}+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2\left(x-1\right)^2}{\left(x-1\right)^3}-\frac{2\left(x-1\right)^3}{\left(x-1\right)^3}=0,\)

\(x^5-x^4-2x^5+2x^5+x^4-x^3+x^3+3x^2\left(x-1\right)^2-2\left(x-1\right)^3=0\)

\(x^5+3x^4-6x^3+3x^2-2\left(x^2-2x+1\right)\left(x-1\right)=0\)

\(x^5+3x^4-6x^3+3x^2-2\left(x^3-x^2-2x^2+2x+x-x\right)=0\)

\(x^5+3x^4-6x^3+3x^2-2x^3+2x^2+4x^2-4x-2x+2x=0\)

\(x^5+3x^4-8x^3+9x^2-4x=0\)

\(x\left(x^4+3x^3-8x^2+9x-4\right)=0\)

ccc m cho đề khó thế m tự giải đi , nhức não 

25 tháng 1 2018

điu phải t cho đâu. Thầy t cho mà... -.-

NV
28 tháng 6 2019

Câu 1: ĐKXĐ: ...

\(\Leftrightarrow4x\left(3x-1\right)+x-1=4x\sqrt{3x+1}\)

\(\Leftrightarrow12x^2-3x-1-4x\sqrt{3x+1}=0\)

\(\Leftrightarrow16x^2-\left(4x^2+4x\sqrt{3x+1}+3x+1\right)=0\)

\(\Leftrightarrow16x^2-\left(2x+\sqrt{3x+1}\right)^2=0\)

\(\Leftrightarrow\left(2x-\sqrt{3x+1}\right)\left(6x+\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow...\)

Câu 2:

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2-4\right)=y^3+2y\\x^2-4=-3y^2\end{matrix}\right.\)

\(\Leftrightarrow x\left(-3y^2\right)=y^3+2y\)

\(\Leftrightarrow y\left(y^2+3xy+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\Rightarrow...\\y^2+3xy+2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow3xy=-y^2-2\Rightarrow x=\frac{-y^2-2}{3y}\)

\(\Rightarrow\left(\frac{y^2+2}{3y}\right)^2-1=3\left(1-y^2\right)\)

\(\Leftrightarrow\left(\frac{y^2-3y+2}{3y}\right)\left(\frac{y^2+3y+2}{3y}\right)=3\left(1-y^2\right)\)

\(\Leftrightarrow\frac{\left(y-1\right)\left(y-2\right)\left(y+1\right)\left(y+2\right)}{9y^2}=3\left(1-y^2\right)\)

\(\Leftrightarrow\frac{\left(y^2-1\right)\left(y^2-4\right)}{9y^2}=3\left(1-y^2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y^2-1=0\\\frac{y^2-4}{9y^2}=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y^2-1=0\\28y^2=4\end{matrix}\right.\)

28 tháng 6 2019

\(3x-1+\frac{x-1}{4x}=\sqrt{3x+1}\)

\(\Leftrightarrow\frac{4x\left(3x-1\right)+x-1}{4x}=\sqrt{3x+1}\)

\(\Leftrightarrow\frac{12x^2-4x+x-1}{4x}=\sqrt{3x+1}\)

\(\Leftrightarrow\frac{12x^2-3x-1}{4x}=\sqrt{3x+1}\)

\(\Leftrightarrow\frac{\left(12x^2-3x-1\right)^2}{16x^2}=3x+1\)

\(\Leftrightarrow\left(12x^2-3x-1\right)^2=16x^2\left(3x+1\right)\)

\(\Leftrightarrow144x^4-120x^3-31x^2+6x+1=0\)

\(\Leftrightarrow144x^4-144x^3+24x^3-24x^2-7x^2+7x-x+1=0\)

\(\Leftrightarrow144x^3\left(x-1\right)+24x^2\left(x-1\right)+7x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(144x^3+24x^2+7x-1\right)=0\)

Tìm được mỗi nghiệm thôi à :v

11 tháng 3 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x-2\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)

\(\frac{3}{\left(x-1\right)\left(x-2\right)}-\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)

\(\frac{3\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}-\frac{2\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}-\frac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

\(3x-9-2x+4-x+1=0\)

\(0x-4=0\Rightarrow0x=4\Rightarrow\) Phương trình vô nghiệm

10 tháng 2 2020

Mình làm 2 câu ab thôi nhé!Cách giải các bài tập này đều như nhau!

Giải:

a) \(\frac{x-9}{x}-\frac{x}{x-9}=0\text{⇔}\frac{x-9}{x}=\frac{x}{x-9}\) (ĐKXĐ: x ≠ 0, x ≠ 9)

⇔ (x - 9)2 = x2 ⇔ (x - 9)2 - x2 = 0 ⇔ -9(2x + 9) = 0 ⇔ 2x + 9 = 0 ⇔ x = \(\frac{-9}{2}\)

Vậy phương trình trên có nghiệm là \(\frac{-9}{2}\)

b) \(\frac{x+3}{x-2}=\frac{5}{\left(x-2\right)\left(3-x\right)}\text{⇔}\frac{x+3}{5}=\frac{x-2}{\left(x-2\right)\left(3-x\right)}\text{⇔}\frac{x+3}{5}=\frac{1}{3-x}\) (ĐKXĐ: x ≠ 2, x ≠ 3)

⇔ (x + 3)(x - 3) = -5 ⇔ x2 - 9 = -5 ⇔ x2 = 4 ⇔ x = \(\pm\)2

Vậy phương trình có tập nghiêm S=\(\left\{\pm2\right\}\)

21 tháng 5 2021

a, \(\frac{x-9}{x}-\frac{x}{x-9}=0\left(đkxđ:x\ne0;9\right)\)

\(< =>\frac{\left(x-9\right)^2}{x\left(x-9\right)}-\frac{x^2}{x\left(x-9\right)}=0\)

\(< =>x^2-18x+81-x^2=0\)

\(< =>18x=81< =>x=\frac{9}{2}\left(tmđk\right)\)

19 tháng 4 2020
https://i.imgur.com/wgXaoMx.jpg
NV
29 tháng 10 2019

ĐKXĐ: ...

\(\Leftrightarrow x^3+\frac{x^3}{\left(x-1\right)^3}+3x.\frac{x}{x-1}\left(x+\frac{x}{x-1}\right)-\frac{3x^2}{\left(x-1\right)}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-2=0\)

\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^2+3\left(\frac{x^2}{x-1}\right)-1-1=0\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^2+3\left(\frac{x^2}{x-1}\right)-1-1=0\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}-1\right)^3-1=0\)

\(\Leftrightarrow\frac{x^2}{x-1}-1=1\)

\(\Leftrightarrow x^2-2x+2=0\)

Phương trình vô nghiệm

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)