K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

Tham khảo thử đúng không nha mn

Áp dụng bất đẳng thức cô si cho hai số dương ta có

\(x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow xy\le\dfrac{2017^2}{4}=\dfrac{4068289}{4}\)

Dấu " = " xảy ra khi:   \(x=y=\dfrac{2017}{2}=1008,5\)

Vậy GTLN của tích xy là \(\dfrac{4068289}{4}\) khi \(x=y=1008,5\)

 

a: \(=\dfrac{6}{3}\cdot x\cdot\dfrac{y^2}{y}=2xy\)

b: \(=\dfrac{62}{2}\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^3}{y^2}=31xy\)

c: \(=\dfrac{-18}{6}\cdot\dfrac{x^4}{x^2}\cdot\dfrac{y^3}{y}=-3x^2y^2\)

d: \(=\dfrac{27}{9}\cdot\dfrac{x^5}{x^3}\cdot\dfrac{y^6}{y^3}=3x^2y^3\)

e: \(=\dfrac{18}{12}\cdot\dfrac{x^3}{x}\cdot\dfrac{y^4}{y^3}=\dfrac{3}{2}x^2y\)

15 tháng 11 2015

tick cho mình rồi mình làm cho

15 tháng 11 2015

a. \(\left(x^2+2x\right)^2+9x^2+18x+20=x^4+4x^3+13x^2+18x+20\)

\(=x^4+2x^3+2x^3+5x^2+4x^2+4x^2+8x+10x+20\)

\(=x^2\left(x^2+2x+5\right)+2x\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)

Lưu ý: có thể dùng phương pháp đồng nhất hệ số dưới dạng \(\left(x^2+ax+5\right)\left(x^2+bx+4\right)\) khi thực xong bước 1

b. \(x^3+2x-3=x^3+x^2-x^2+3x-x-3=x\left(x^2+x+3\right)-\left(x^2+x+3\right)=\left(x-1\right)\left(x^2+x+3\right)\)

c. \(x^2-4xy+4y^2-2x+4y-35=\left(x-2y\right)^2-2\left(x-2y\right)+1-36=\left(x-2y-1\right)^2-6^2\)

\(=\left(x-2y-1-6\right)\left(x-2y-1+6\right)=\left(x-2y-7\right)\left(x-2y+5\right)\)

 

11 tháng 8 2019

A, 4x(x-1) - (1-x)

= 4x(x-1) - 1+x

= 4x(x-1) + (x-1)

= (x-1)(4x+1)

B,18x²(3+x) + 3(x+3)

= 18x²(3+x) + 3(3+x)

= (18x² + 3)(3+x)

Theo mình nghĩ đề của bạn là thu gọn. Nên mình làm vầy. Nếu ko phải đề đó thì thôi. Còn nếu đúng thì câu C tương tự.

Học tốt√√

a: \(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)

\(=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)

b: \(=\left(x^2-4xy+4y^2\right)-2\left(x-2y\right)-35\)

\(=\left(x-2y\right)^2-2\left(x-2y\right)-35\)

\(=\left(x-2y-7\right)\left(x-2y+5\right)\)

c: Sửa đề: \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+384+16\)

\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)

\(=\left(x^2+10x+20\right)^2\)

10 tháng 1 2021

Từ phương trình \(\left(2\right)\)\(3x+4y=0\Leftrightarrow y=-\dfrac{3}{4}x\)

Thế vào phương trình \(\left(1\right)\) ta được:

\(\left(18x^2+\dfrac{9}{2}x-17\right)\left(21x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3\pm\sqrt{553}}{24}\\x=\pm\dfrac{\sqrt{21}}{21}\end{matrix}\right.\)

\(x=\dfrac{-3+\sqrt{553}}{24}\Rightarrow y=\dfrac{3-\sqrt{553}}{32}\)

\(x=\dfrac{-3-\sqrt{553}}{24}\Rightarrow y=\dfrac{3+\sqrt{553}}{32}\)

\(x=\dfrac{\sqrt{21}}{21}\Rightarrow y=-\dfrac{\sqrt{21}}{28}\)

\(x=-\dfrac{\sqrt{21}}{21}\Rightarrow y=\dfrac{\sqrt{21}}{28}\)

Vậy ...

26 tháng 11 2019

B = \(\frac{8xy-6x^2}{3y\left(3x-4y\right)}=\frac{2x\left(4y-3x\right)}{-3y\left(4y-3x\right)}=-\frac{2x}{3y}\)

C = \(\frac{2x^3-18x}{x^4-81}=\frac{2x\left(x^2-9\right)}{\left(x^2-9\right)\left(x^2+9\right)}=\frac{2x}{x^2+9}\)