K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

3A=3^2+....+3^2013

=>3A-A=(3^2+....+3^2013)-(3+....3^2012)

=>3A-1A=3^2+....+3^2013-3-....3^2012

=>2A=3^2013-3

=>2A+3=3^n

=>3^2013-3+3=3^n

=>n=2013

1 tháng 4 2023

help

 

1 tháng 4 2023

help me: tìm n biết 2^n + 3^n = 5^n với n E N

26 tháng 11 2015

A = 3 + 32 + 33 + 3+ . . . + 3100

3A = 32 + 33 + 34 + . . . + 3101

=> 3A - A = 3101 - 3

           2A = 3101 - 3

=> 2A + 3 = 3101

Mà : 2A + 3 = 3n

=> n = 101

Vậy : n = 101

25 tháng 9 2015

 A=3+3^2+3^3+.....+3^100  (1)

Nhân 2 vế với 3,ta được:

3A=3^2+3^3+3^4+......+3^101 (2)

Lấy(2)-(1),ta được:

2A=3^101-3

Thay 2A vào biểu thức , ta được:

3^101-3+3=3^n

3^101=3^n

n=101

4 tháng 11 2015

suy ra 3.A=3^2+...+3^101

3A-A=(3^2+...+3^101)-(3+...+3^100)

2A=3^101-3

A=(3^101-3):2

2A+3=(3^101-3):2.2+3

          =3^101-3+3

          =3^101

3^x=3^101

Vậy x =101 

22 tháng 9 2016

Bài này mk làm rất nhiều rồi mà bạn có thể và những câu hỏi liên quan để xem nhé

22 tháng 9 2016

Câu hỏi của Pham Tuan Anh - Toán lớp 6 | Học trực tuyến

3A = 3 + 3^ 2 + 3^3 + ... + 3 ^ 100 + 3 ^ 101

A =1 + 3 + 3 ^ 2 + .. + 3 ^ 100

3A - A = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 100 + 3 ^ 101 - 1 - 3 - 3 ^ 2 - ... - 3^ 100

= 3 ^ 101 - 1

2A = 3 ^ 101 - 1

2A + 3 = 3 ^ 101 - 1 + 3 = 3 ^ 101 + 2 khác 3 ^ n

=> ko có n thỏa mãn

23 tháng 6 2016

3A = 3 + 3^ 2 + 3^3 + ... + 3 ^ 100 + 3 ^ 101

A =1 + 3 + 3 ^ 2 + .. + 3 ^ 100

3A - A = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 100 + 3 ^ 101 - 1 - 3 - 3 ^ 2 - ... - 3^ 100

= 3 ^ 101 - 1

2A = 3 ^ 101 - 1

2A + 3 = 3 ^ 101 - 1 + 3 = 3 ^ 101 + 2 khác 3 ^ n

=> ko có n thỏa mãn

15 tháng 7 2015

a, A=3+3^2+3^3+.....+3^100(1)

Nhân 2 vế với 3,ta được:

3A=3^2+3^3+3^4+......+3^101(2)

Lấy(2)-(1),ta được:

2A=3^101-3

b,Thay 2A vào biểu thức , ta được:

3^101-3+3=3^n

3^101=3^n

n=101

Nhớ tích đúng cho mình nha bạn.

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3