Cho tứ giác ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Gọi chu vi của tứ giác ABCD là Pabcd. Chứng minh:
a) AC +BD>Pabcd chia 2
b) Nếu AC<Pabcd chia 2 thì AC+BD<Pabcd
Mong mn giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có
OA + OB > AB ( Bất đẳng thức tam giác )
OC + OD > CD ( Bất đẳng thức tam giác )
Công dọc theo vế:
=> OA + OB + OC +OD > AB + CD
=> AC + BD > AB + CD
Bài toán được chứng minh
b)
Ta có:
OA + OD > AD ( Bất đẳng thức tam giác )
OC + OB > CB ( Bất đẳng thức tam giác )
Công dọc theo vế:
=> OA + OD + OC + OB > AD + CB
=> AC + BD > AD + BC
Bài toán được chứng minh
Bài 1)
Trên AD lấy E sao cho AE = AB
Xét ∆ACE và ∆ACB ta có :
AC chung
DAC = BAC ( AC là phân giác)
AB = AE (gt)
=> ∆ACE = ∆ACB (c.g.c)
=> CE = CB (1)
=> AEC = ABC = 110°
Mà AEC là góc ngoài trong ∆EDC
=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)
=> ECD = 110 - 70
=> EDC = 40°
Xét ∆ EDC :
DEC + EDC + ECD = 180 °
=> CED = 180 - 70 - 40
=> CED = 70°
=> CED = EDC = 70°
=> ∆EDC cân tại C
=> CE = CD (2)
Từ (1) và (2) :
=> CB = CD (dpcm)
b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°
Bài 8:
a: AB+BC+AC=AB+BC+AO+OC
AB+AO>BO
BC+OC>BO
Do đó: AB+AO+BC+OC>2BO
hay 2BO<AB+AC+BC
b: OA+OB>AB
OC+OD>CD
Do đó: AB+CD<AC+BD
mà AC+CD>AB+BD
nên 2AC+BD+CD>2AB+BD+CD
=>AC>AB
Bài này là định lý khá cơ bản của tứ giác điều hoà.
Do AM, AC đẳng giác của góc BAD nên dễ dàng chứng minh được:
\(\widehat{BAM}=\widehat{CAD}\).
Mặt khác do tứ giác ABCD nội tiếp nên \(\widehat{ABM}=\widehat{ACD}\).
Từ đó \(\Delta ABM\sim\Delta ACD(g.g)\)
\(\Rightarrow\dfrac{AB}{BM}=\dfrac{AC}{CD}\Rightarrow AB.CD=BM.AC\).
Chứng minh tương tự, ta cũng có \(AD.BC=CM.AC\).
Mà BM = CM nên \(AB.CD=AD.BC\) hay tứ giác ABCD điều hoà.
(Định lý đảo vẫn đúng).
Thì bạn lấy một ví dụ đơn giản là A đi qua nhà B thì có hai cách là đi thẳng hoặc đi vòng. Nếu đi vòng thì độ dài quãng đường sẽ lớn hơn đi thẳng nên ta có bất đẳng thức tam giác
Thì bạn lấy một ví dụ đơn giản là A đi qua nhà B thì có hai cách là đi thẳng hoặc đi vòng. Nếu đi vòng thì độ dài quãng đường sẽ lớn hơn đi thẳng nên ta có bất đẳng thức tam giác
Thì bạn lấy một ví dụ đơn giản là A đi qua nhà B thì có hai cách là đi thẳng hoặc đi vòng. Nếu đi vòng thì độ dài quãng đường sẽ lớn hơn đi thẳng nên ta có bất đẳng thức tam giác
Mình không tìm thấy ảnh có điểm I,K,L,M nên làm theo điểm như bài này nhé bạn
Xét tam giác ABC có:
\(\frac{CF}{BF}=\frac{CI}{CA}=\frac{1}{2}\)nên IF là đtb của tam giác ABC hay IF//AB//DC(1)
Xét tam giác BDC có
\(\frac{BK}{BD}=\frac{BF}{BC}=\frac{1}{2}\)nên KF là đtb của tam giác BDC hay KF//AB//DC(2)
Từ (1) và (2) ta có :
Theo tiên đề Ơ-clit thì qua điểm F chỉ có 1 đường thẳng song song với AB ( hoặc CD)
Nên KF và IF là 1 hay K,F,I thẳng hàng
Tương tự bạn chứng minh E,K,I thẳng hàng
EK là đtb của tam giá ABD nên EK //AB
EI là đtb của tam giác ADC nên EI // AB//DC
Rồi suy ra K,F,I và E,K,I đều thẳng hàng với nhau hay E,K,F,I thẳng hàng ( I,K,L,M thẳng hàng)
Nếu ABKL là hình chữ nhật thì
\(AL=BK\Rightarrow\hept{\begin{cases}AL=\frac{1}{2}AC\\BK=\frac{1}{2}BD\end{cases}}\)
Nên AC = BD hay tứ giác ABCD có hai đường chéo bằng nhau
eget4t