Cho f(x)= ax^2 + bx +c và 7a +b =0
Chứng minh rằng f (-3) . f(x) ko thể âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : f(3) => f(-3)
Ta có : \(f\left(x\right)=ax^{2\:}+bx+c\Rightarrow\hept{\begin{cases}f\left(10\right)=100a+10b+c\\f\left(-3\right)=9a-3b+c\end{cases}}\)
\(\Rightarrow f\left(10\right)-f\left(3\right)=91a+13b=13\left(7a+b\right)=0\)
\(\Rightarrow f\left(10\right)=f\left(-3\right)\Rightarrow f\left(10\right)f\left(-3\right)=f^2\left(10\right)\ge0\)
\(\Rightarrow f\left(10\right)f\left(-3\right)\)không thể là số âm
f(10) = 100a+10b+c=10(7a+b)+30a+c=30a+c
f(-3)=9a-3b+c =7a+b+2a-4b+c =0+2a+28a+c=30a+c
Þf(10) f(-3)=(30a+c)2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11
1
11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11
1
1
1
1
1
1
1
1
1
1111
1
1111
1
1
1
`
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
111
1
1
1
1
1
1
1
1
1
1
11
1
11
1
1
1
1
1
111
1
1
1
1
1
`
`
1
1
1
1
1
1
1
1
1
1
thay b=-7a vào đa thức f(x)có:
f(x)=ax^2+(-7a)x +c
Ta có:
f(10)=a*10^2-7*a*10+c
=a*100-70a+c
=30a+c (1)
Ta lại có:
f(-3)=a*(-3)^2-7a*(-3)+c
=a*9-(-21)a+c
=30a+c (2)
Từ (1) và (2) suy ra:
f(10),f(-3) ko thể là 1 số âm
\(f\left(10\right)=100a+10b+c\)
\(=10\left(7a+b\right)+30a+c\)
\(=30a+c\)
\(f\left(-3\right)=9a-3b+c\)
\(=7a+b+2a-4b+c\)
\(=2a+28a+c\)
\(=30a+c\)
\(f\left(-3\right).f\left(10\right)=\left(30a+c\right)\left(30a+c\right)\)