Cho ΔABC vuông tại A. Tia phân giác ABC cắt AC tại D. Vẽ DE ⊥ BC (E thuộc BC). a) Chứng minh: ΔABD = ΔEBD và AD = DE. b) AE cắt BD tại F. Chứng minh CF là trung tuyến của ΔACE. c) Đường thẳng vuông góc với BC tại B cắt CA tại M. Gọi I là điểm bất kỳ thuộc đoạn AB. Trên tia đối của tia AB lấy điểm J sao cho AJ = BI. Đường thẳng vuông góc với AB tại I cắt BM tại P. Chứng minh: PJ ⊥ JC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD có: góc ABD+ góc BAD = 90( vì tam giác ABD vuông tại D)
mà góc EAB =góc ABD (so le trong)
=> góc BAD + góc BAE = 90
Tứ giác ADBE có: góc BEA=góc EAD= góc ADB=90
=> Tứ giác ADBE là hình chữ nhật
( câu b , c bữa sau minh giải nha giờ mình co việc roj)
bạn tự vẽ hình
a, xét tam giác ABM và tam giác ACM có :
AB=AC (gt)
MB=MC (gt)
AM là cạch chung
suy ra tam giác ABM =tam giác ACN (c.c.c)
b, Vì tam giác ABM = tam giác ACN (câu a)
suy ra góc M1= góc M2 (2 góc tương ứng)
mà M1+M2=180 ( 2 góc kề bù)
suy ra : M1=M2= 90
suy ra AM vuông góc BC
c, Vì tam giác ABM = tam giác ACM (câu a)
suy ra : A1=A2 ( 2 góc tương ứng)
suy ra: AM là phân giác góc BAC
bn vẽ hình giùm mik nha
a) xét tam giác ABM và tam giác ACM có:
AM cạnh chung
BM=MC(M trđ BC)
AB=AC(gt)
Nên tam giác ABM = tam giác ACM(ccc)
b) Từ c/m a có: tam giác ABM=tam giác ACM => góc AMB = góc AMC mà AMB+AMC=180 độ(kề bù)
hay 2.AMB=180 độ => AMB=90 độ => AM vuông BC
c) Có tam giác ABM = tam giác ACM => BAM=CAM kết hợp AM nằm giữa AB và AC => AM p/g BAC
a) Xét tam giác ABD và tam giác EBD có :
AB= BE ( giả thiết ) (1)
Góc B1 = góc B2 ( vì tia BD là tia phân giác ) (2)
BD : cạnh chung (3)
Từ (1) ;(2) và (3) => tam giác ABD = tam giác EBD ( cạnh - góc - cạnh )
b) Vì tam giác ABD = tam giác EBD ( chứng minh ở câu a)
=> góc BAD = góc BED ( cặp góc tương ứng )
Mà góc BAD = 90 độ
=> BED = 90 độ
c) Vì góc BED = 90 độ
=> tam giác BED vuông
d) Vì AH vuông góc với BC ( giả thiết) (1)
và DE vuông góc với BC ( giả thiết ) (2)
Từ (1) và (2) => AH // DE ( điều phải chứng minh).
b: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
góc ABH=góc EBH
=>ΔBHA=ΔBHE
c: ΔBHA=ΔBHE
=>BA=BE
Xét ΔBAK và ΔBEK có
BA=BK
góc ABK=góc EBK
BK chung
=>ΔBAK=ΔBEK
=>góc BEK=góc BAK=90 độ
=>EK vuông góc bC
d: AK=KE
KE<KC
=>AK<KC
a: Xét ΔDEM vuông tại D và ΔHEM vuông tại H có
EM chung
\(\widehat{DEM}=\widehat{HEM}\)
Do đó:ΔDEM=ΔHEM
b: Ta có: ΔDEM=ΔHEM
nên DE=HE; DM=HM
Ta có: DE=HE
nên E nằm trên đường trung trực của DH(1)
Ta có: MD=MH
nên M nằm trên đường trung trực của DH(2)
Từ (1) và (2) suy ra ME⊥DH
c: Xét ΔDMK vuông tại D và ΔHMF vuông tại H có
MD=MH
\(\widehat{DMK}=\widehat{HMF}\)
Do đó:ΔDMK=ΔHMF
Suy ra: DK=HF
Ta có: ED+DK=EK
EH+HF=EF
mà ED=EH
và DK=HF
nên EK=EF
hay ΔEKF cân tại E
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
b: DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
=>F là trung điểm của AE
XétΔECA có F là trung điểm của EA
nên CF là đường trung tuyến của ΔECA
Câu c, chứ câu a, b thì kiến thức lớp 7.