s=3/(5x2!)+3/(5x3!)+.....3/(5x100!) có là số nguyên không ? vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. x = 3, x = -3 có là nghiệm của N(x) vì N(3) = N(-3) = 0 (0.5 điểm)
nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
=> S là số chính phương
S = 3^0 + 3^2 + 3^4 + 3^6 + ... + 3^2002
Ta thấy tổng S gồm ( 2002 - 0 ) : 2 + 1 = 1002 ( số hạng ), mỗi số hạng đều chia 4 dư 1 => S chia 4 dư 1002 hay S chia 4 dư 2
Mà số chính phương chia 4 chỉ có thể dư 0 hoặc 1 nên S không là số chính phương
Vậy S không là số chính phương
Trả lời:
1. Số nguyên tố lớn nhất trong phạm vi 100 là 97.
2. Không. Vì 2 là số chẵn.
3. Không. Vì như câu 1, 97 là số nguyên tố.
a) Số nguyên a là số hữu tỉ vì a = \(\frac{a}{1}\)
b) CÁc số đó là các số hữu tỉ vì :
\(0,6=\frac{3}{5}\)
\(-1,25=\frac{-5}{4}\)
\(1\frac{1}{3}=\frac{4}{3}\)