Chứng minh rằng: n2.(n+1)+2n.(n+1) luôn chia hết cho 6 với mọi n thuộc Z
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
n^2.(n+1) + 2n.(n+1)
=(n+1). (n^2 + 2n)
= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)
n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.
=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.
Mà (2,3) = 1
=> n(n + 1)(n + 2) chia hết cho 6
=> n2.(n+1)+2n.(n+1) chia hết cho 6