K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8

\(x^{64}+x^{32}+1\\ =x^{64}+2x^{32}+1+x^{32}-2x^{32}\\ =\left[\left(x^{32}\right)^2+2\cdot x^{32}\cdot1+1^2\right]-x^{32}\\ =\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\\ =\left(x^{32}-x^{16}+1\right)\left(x^{32}+x^{16}+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left[\left(x^{32}+2x^{16}+1\right)+x^{16}-2x^{16}\right]\\ =\left(x^{32}-x^{16}+1\right)\left[\left(x^{16}+1\right)^2-x^{16}\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^{16}+x^8+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left[\left(x^{16}+2x^8+1\right)-x^8\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left[\left(x^8+1\right)^2-x^8\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^8+x^4+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left[\left(x^8+2x^4+1\right)-x^4\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left[\left(x^4+1\right)^2-x^4\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left[\left(x^4+2x^2+1\right)-x^2\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left[\left(x^2+1\right)^2-x^2\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(x^{64}+x^{32}+1\)

\(=x^{64}+2x^{32}-x^{32}+1\)

\(=\left(x^{64}+2^{32}+1\right)-x^{32}\)

\(=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\)

\(=\left(x^{32}+1-x^{16}\right)\left(x^{32}+1+x^{16}\right)\)

21 tháng 10 2017

câu này lên google

21 tháng 10 2017

\(x^{64}+x^{32}+1\)

\(=\left(x^{32}\right)^2+2x^{32}+1+x^{32}-2x^{32}\)

\(=\left(x^{32}+1\right)^2-x^{32}\)

\(=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\)

\(=\left(x^{32}+1-x^{16}\right).\left(x^{32}+1+x^{16}\right)\)

13 tháng 7 2016

a) \(x^3\left(x^2-7\right)^2-36x=x\left[\left(x^3-7x\right)^2-6^2\right]\)

\(=x\left(x^3-7x-6\right)\left(x^3-7x+6\right)\)

\(x\left[\left(x-3\right)\left(x+1\right)\left(x+2\right)\right].\left[\left(x+3\right)\left(x-2\right)\left(x-1\right)\right]\)

\(=\left(x-3\right)\left(x-2\right)\left(x-1\right).x.\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Không pt được.

c) Không pt được.

4 tháng 8 2018

  (x-1)(x+2)(x+3)(x-6)+32^2

=x ^ 4-2 * x ^ 3-23 * x ^ 2-12 * x + 1060  

bạn tham khảo  rồi tự làm nha

4 tháng 8 2018

mink ko hiểu 

22 tháng 12 2018

Ta có: 
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8 
= (x² + 8)² - (4x)² 
= (x² - 4x + 8)(x² + 4x + 8) 

22 tháng 12 2018

Ta có: 
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8 
= (x² + 8)² - (4x)² 
= (x² - 4x + 8)(x² + 4x + 8) 

18 tháng 10 2015

x+ 64 = (x+  16x+ 64) - 16x2 = (x+ 8)- (4x)= (x- 4x + 8).(x+ 4x + 8)

Ta có

x+ 64

= (x+  16x+ 64) - 16x2 

= (x+ 8)- (4x)

= (x- 4x + 8).(x+ 4x + 8)

hok tốt

Ta có: 

x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8 

= (x² + 8)² - (4x)² 

= (x² - 4x + 8)(x² + 4x + 8) 

k nhoa

Ta có: 

x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8 

= (x² + 8)² - (4x)² 

= (x² - 4x + 8)(x² + 4x + 8) 

k nhoa

25 tháng 9 2021

1) \(64-y^2=8^2-y^2=\left(8-y\right)\left(8+y\right)\)

2) \(81-x^2=9^2-x^2=\left(9-x\right)\left(9+x\right)\)

3) \(100-a^2=10^2-a^2=\left(10-a\right)\left(10+a\right)\)

4) \(144-b^2=12^2-b^2=\left(12-b\right)\left(12+b\right)\)

hdt thức nha bạn

~~~~~~~~~~~~~

^_^

24 tháng 9 2018

\(x^4+64\)

\(=\left(x^2\right)^2+8^2+2x^2.8-2x^2.8\)

\(=\left(x^2+8\right)^2-\left(4x^2\right)\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

28 tháng 10 2017

x^4+4=x^4 + 4x^2 +4 - 4x^2=(x^2)^2+ 2.x^2.2+2^2 - (2x)^2 = (x^2+2)-(2x)^2 =(x^2+2-2x)(2^2+2-2x)

28 tháng 10 2017

\(x^4+4=x^4+4x^2+4-4x^2\)

                 \(=\left(x^2+2\right)^2-4x^2\)

                  \(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)