cho số tự nhiên n thoả mãn 2n+7 và 3n + 10 là số chính phương
CMR n+3⋮40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3(5 – 4n) + (27 + 2n) > 0
⇔ 15 – 12n + 27 + 2n > 0
⇔ -10n + 42 > 0
⇔ -10n > -42
⇔ n < 4,2
Vậy các số tự nhiên cần tìm là 0; 1; 2; 3; 4.
a) <=> 4n+4+3n-6 <19 <=> 7n<21 <=> n<3 (1)
b) <=> n^2 - 6n + 9 - n^2 +16 \(\le\)43
\(\Leftrightarrow\)-6n \(\le\)18 <=> n > 3 (2)
Từ 1 và 2 => n=\(\Phi\)