K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

a: Khi m=1 thì phương trình sẽ là x^2-2x-1=0

=>x^2-2x+1-2=0

=>(x-1)^2=2

=>\(x=\pm\sqrt{2}+1\)

b: Δ=(-2)^2-4*1*(-m^2)=4m^2+4>=4>0

=>Phương trình luôn có hai nghiệm phân biệt

Bài 2:

uses crt;

var n,i,t:integer;

begin

clrscr;

readln(n);

t:=0;

for i:=1 to n do

if (i mod 3=0) and (i mod 5=0) then t:=t+i;

writeln(t);

readln;

end.

23 tháng 2 2017

Đáp án B

29 tháng 10 2023

a: Khi m=1 thì phương trình sẽ là:

\(x^2-2x+1-1=0\)

=>x^2-2x=0

=>x(x-2)=0

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)

Để phương trình có 2 nghiệm thì -4m+8>=0

=>-4m>=-8

=>m<=2

\(x_1^3+x_2^3< =15\)

=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)< =15\)

=>\(2^3-3\cdot2\cdot\left(m-1\right)< =15\)

=>\(8-6m+6< =15\)

=>-6m+14<=15

=>-6m<=1

=>\(m>=-\dfrac{1}{6}\)

=>\(-\dfrac{1}{6}< =m< =2\)