Giải hệ phương trình: \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(hpt\Leftrightarrow\hept{\begin{cases}6(x^3-y^3)=6(8x+2y)\\x^2-3y^2=6\end{cases}}\)
Suy ra \(6(x^3-y^3)=(8x+2y)(x^2-3y^2)\)
\(\Leftrightarrow x(x-3y)(x+4y)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3y;x=-4y\end{cases}}\)
Thay vào giải tiếp nhé !!
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
\(1,\hept{\begin{cases}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}\left(ĐKXĐ:x\ne0\right)}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{3}{x}-1\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}}\)
\(\Rightarrow\left(\frac{3}{x}-1\right)^2-\frac{5}{x^2}=-1\)
Đặt \(\frac{1}{x}=a\left(a\ne0\right)\)
\(\Rightarrow\left(3a-1\right)^2-5a^2=-1\)
\(\Leftrightarrow9a^2-6a+1-5a^2+1=0\)
\(\Leftrightarrow4a^2-6a+2=0\)
Làm nốt
2, ĐKXĐ \(x\ge1,y\ge0\)
\(\hept{\begin{cases}xy+x+y=x^2-2y^2\left(1\right)\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\left(2\right)\end{cases}}\)
Pt (1) <=> \(xy+x+y+y^2=x^2-y^2\)
<=> \(y\left(x+y\right)+x+y=\left(x-y\right)\left(x+y\right)\)
<=> \(\left(x+y\right)\left(y+1\right)=\left(x-y\right)\left(x+y\right)\)
<=> \(\left(x+y\right)\left(2y+1-x\right)=0\)
Mà \(x\ge1,y\ge0\) => \(x+y>0\) => \(2y+1-x=0\)<=> \(x=2y+1\)
Thay x=2y+1 vào (2)
Đoạn này bn tự giải tiếp nhé
gdgsbcn3wvevitoierha5 4mfs,cuq8w3[0 nef g4u vycy091nkvu rnf yn24gtc3gwy 5te7s8xy344h3f-n
Mới nghĩ ra cách mới toanh nhưng ko biết đúng ko.
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-8x-y^2-2y=0\\x^2-3-3y^2-3=0\end{cases}}}\)
Vì 2 phương trình trên đều ''='' 0 Suy ra : \(x^3-8x-y^2-2y=x^2-3-3y^2-3\)
Mà \(x^3-8x-y^2-2y-x^2+3+3y^2+3=0\)
\(\Leftrightarrow\left(x^3-8x-x^2+3\right)\left(-y^2-2y+3y^2+3\right)=0\)
Ta lại có : \(\orbr{\begin{cases}x^3-8x-x^2+3=0\\2y^2-2y+3=0\end{cases}}\)=> Vô nghiệm