Cho tam giac ABC can tai A,M la trung diem BC.Duong tron K tiep xuc AB,AC lan luot tai B,C va K cat AM tai N.Goi P la mot diem thuoc K va P nam trong tam giac ABC.CM PN la phan giac goc APM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\angle AKB=\angle AIB=90\Rightarrow AKIB\) nội tiếp
b) Trong (O) có DE là dây cung không đi qua O và M là trung điểm DE
\(\Rightarrow OM\bot DE\)
CEAD nội tiếp \(\Rightarrow\angle CED=\angle CAD\)
CEBD nội tiếp \(\Rightarrow\angle CDE=\angle CBE\)
mà \(\angle CAD=\angle CBE\) (AKIB nội tiếp)
\(\Rightarrow\angle CED=\angle CDE\Rightarrow\Delta CDE\) cân tại C mà M là trung điểm DE
\(\Rightarrow CM\bot DE\Rightarrow C,O,M\) thẳng hàng
c) AKIB nội tiếp \(\Rightarrow\angle IKB=\angle IAB=\angle DAB=\angle DEB\)
\(\Rightarrow\) \(IK\parallel DE\)
Gọi Mx là tia đối của tia MA.
+) Ta có: Tứ giác AMBC nội tiếp có góc ngoài là ^BMx => ^BMx = ^ACB (1)
Tứ giác AKNC nội tiếp có góc ngoài là ^BKN => ^BKN = ^ACB
Xét đường tròn (BKN): ^BKN = ^BMN (2 góc nội tiếp cùng chắn cung BN) => ^BMN = ^ACB (2)
Từ (1) và (2) => ^BMx = ^BMN => MB là tia phân giác của ^NMx (*)
+) Xét đường tròn (O) có: ^ACN = ^ACB = 1/2.Sđ(AN = 1/2.^AON
Mà ^ACB = ^BMN = 1/2.^NMx (cmt) nên ^AON = ^NMx => Tứ giác AONM nội tiếp
Xét đường tròn (AONM): OA=ON => (OA = (ON => ^AMO = ^NMO = 1/2.AMN
=> MO là tia phân giác của ^AMN (**)
+) Từ (*) và (**) kết hợp với ^AMN + ^NMx = 1800 suy ra: ^OMB = 900 (đpcm).